Bandara Letung Riau [Under Construction]

16 Agustus 2017

BANDARA LETUNG - ANAMBAS - RIAU

Akses lalu lintas transportasi udara di Kabupaten Kepulauan Anambas kini lebih mudah setelah Bandara Letung dioperasikan. Daerah yang terletak Laut Natuna Utara dan berdekatan dengan negara tetangga Singapura, Malaysia, Thailand, Vietnam dan Kamboja itu, telah siap menjadi pintu gerbang Indonesia. Pembukaan bandara domestik baru tersebut merupakan wujud agenda Nawacita pemerintahan Presiden Joko Widodo, sekaligus bentuk kehadiran negara bagi masyarakat di kawasan terluar Indonesia.

Bandara Letung difungsikan sebagai bandara pengumpan. Lokasinya berada di pulau Jemaja, Kabupaten Anambas, Provinsi Kepulauan Riau. Pengoperasiannya dimulai sejak 22 November 2016. Bandara ini memiliki runway sepanjang 1.200 meter dan lebar 30 meter yang mampu didarati pesawat sejenis C-212 dan DHC-6. Sebidang Apron berukuran 125 meter kali 70 meter juga telah tersedia. Sedangkan gedung terminalnya didirikan dengan luas 600 meter persegi.

Sejak Kepulauan Anambas ditetapkan sebagai Kawasan Wisata Laut Nasional, peran Bandara Letung semakin vital. Di samping menjadi pintu gerbang udara yang memudahkan mobilitas masyarakat, juga berlaku sebagai penunjang pertumbuhan ekonomi daerah seiring kelancaran distribusi barang dan jasa, serta kebangkitan industri pariwisata.

Like It, Comments dan Shared info ini kalau Kita Cinta Indonesia dan mau Indonesia menjadi lebih baik lagi dan bisa sejajar dengan negara-negara maju di dunia.

Bandara Koroway Batu – Papua [Under Construction]

18  Agustus 2017

BANDARA KOROWAY BATU PAPUA

Konektivitas transportasi di Papua menjadi fokus perhatian Pemerintah. Bandara-bandara perintis gencar dikembangkan. Selain untuk menghubungkan wilayah-wilayah di sana, juga berfungsi sebagai pembangkit industri wisata, tempat distribusi barang dan jasa untuk memangkas disparitas harga, jalur logistik saat terjadi bencana alam dan sarana pertahanan serta keamanan negara. Satu diantara sekian bandara yang sedang dibenahi adalah Bandar udara Koroway Batu di Tanah Merah, Kabupaten Boven Digoel. Saat ini bandara tersebut dikelola Satuan Kerja Bandar Udara, Kementerian Perhubungan.

Bandara domestik ini berperan sebagai bandara pengumpan. Pesawat-pesawat yang diperbolehkan mendarat adalah jenis Grand Caravan C-208. Landasan pacunya terbentang sepanjang 800 meter dan lebar 18 meter. Apron yang semula hanya 1000 meter persegi, kini diluaskan menjadi 2400 meter persegi. Bandara ini mampu didarati pesawat sejenis Grand Caravan C-208. Penambahan dimensi landasan masih terus dilakukan sehingga Bandara ini mampu didarati pesawat berbadan besar sejenis ATR. Akhir tahun ini, pekerjaan tersebut ditargetkan rampung.

Pengembangan bandara-bandara di antero Papua yang dilakukan pada masa pemerintahan Presiden Joko Widodo ini merupakan langkah nyata perwujudan Nawacita untuk membangun Indonesia dari pinggiran dengan memperkuat daerah-daerah dan desa dalam kerangka negara kesatuan. Selain juga untuk mewujudkan kemandirian ekonomi dengan menggerakkan sektor-sektor strategis ekonomi domestik.

Like It, Comments dan Shared info ini kalau Kita Cinta Indonesia dan mau Indonesia menjadi lebih baik lagi dan bisa sejajar dengan negara-negara maju di dunia.

Bandara Utarom – Kaimana – Papua Barat

18 Agustus 2017 BANDARA UTAROM - KAIMANA - PAPUA BARAT

Bandara Utarom menjadi salah satu ikon kebanggaan Provinsi Papua Barat. Setelah rampung dikembangkan pada akhir 2015, bandara yang terletak di Kabupaten Kaimana tersebut makin membantu mobilitas masyarakat, termasuk memudahkan distribusi barang dan jasa. Bandara tersebut telah diresmikan pengoperasiannya oleh Presiden Joko Widodo pada 30 Desember 2015.

Bandara Utarom merupakan bandara kelas III yang memiliki panjang runway 2000 m x 30 m, 2 taxi way, 1 appron seluas 170 m x 60m, dan mampu didarati pesawat sejenis ATR 72-500. Terminal penumpangnya diperluas menjadi 1.800 meter persegi dan dapat menampung hingga 128 penumpang yang dapat dioptimalkan sampai 172 penumpang. Lingkungan terminal dibuat sedemikian bersih dan nyaman dalam rangka peningkatan pelayanan kepada penumpang. Demi peningkatan keselamatan, bandara ini telah dilengkapi dengan peralatan navigasi seperti, Non Directional Beacon (NDB), Doppler VHF Omnidirectional Range (DVOR), Precission Approach path indicator (PAPI), dan Airfield Lighting System (AFL).

Pengembangan Bandara Utarom yang dilakukan pada masa pemerintahan Presiden Joko Widodo ini, merupakan langkah nyata perwujudan Nawacita untuk membangun Indonesia dari pinggiran dengan memperkuat daerah-daerah dan desa dalam kerangka negara kesatuan. Selain juga untuk mewujudkan kemandirian ekonomi dengan menggerakkan sektor-sektor strategis ekonomi domestik.

Like It, Comments dan Shared info ini kalau Kita Cinta Indonesia dan mau Indonesia menjadi lebih baik lagi dan bisa sejajar dengan negara-negara maju di dunia.

Pelabuhan Wasior Papua Barat

19 Agustus 2017

NEWS 150x13

20664454_1932823973633344_7203797606074316512_n

Gagasan tol laut yang dicanangkan Presiden Joko Widodo untuk menghubungkan Sabang-Merauke kian menampakkan hasil. Berbagai pelabuhan pendukung konektivitas transportasi laut sudah terbangun. Satu di antaranya adalah Pelabuhan Wasior yang berada di Teluk Wondama, Papua Barat. Pelabuhan Wasior menempati lahan seluas 55.718 meter persegi, berperan sebagai pelabuhan pengumpul dalam hierarki pelabuhan laut.

Fasilitas yang telah dibangun di pelabuhan Wasior meliputi dermaga seluas 174×10 meter persegi, Trestle I seluas 48×8 meter persegi, Trestle II seluas 47×8 meter persegi, Causeway I seluas 160×6 meter persegi, Causeway II seluas 127×8 meter persegi dan reklamasi 12.500 meter persegi. Selain itu terdapat pembangunan fasilitas darat seperti kantor, terminal penumpang, pos jaga, rumah pompa, genset, gudang seluas 15×40 meter persegi dan lapangan penumpukan seluas 10.000 meter persegi. Pelabuhan ini mampu disandari kapal seberat 3.500 DWT dengan faceline dermaga -10 mLWS.

Sejak diresmikan Presiden Joko Widodo pada bulan April 2016, pelabuhan ini telah mampu mempercepat pertumbuhan ekonomi setempat. Fungsinya sebagai jalur penghubung Kabupaten Teluk Wondana dengan kabupaten lain di Indonesia telah melancarkan arus distribusi barang dan jasa sekaligus memangkas disparitas harga. Pembangunan Pelabuhan Wasior merupakan bentuk komitmen pemerintahan Presiden Joko Widodo untuk mewujudkan program Nawa Cita, yaitu membangun Indonesia dari pinggiran dengan memperkuat daerah-daerah dan desa dalam kerangka Negara kesatuan.

 

Seminggu Uji Coba, Simpang Susun Semanggi Dilintasi 50.000 Kendaraan per Hari

By Bruniq, August 8, 2017

NEWS 150x13

simpang-susun-semanggi2toga-1-640x366

JAKARTA – Selama sepekan jalan layang Simpang Susun Semanggi Jakarta berlangsung.

Jalan layang itu pun diklaim telah mengurangi sebanyak 30 persen kemacetan di wilayah sekitarnya.

“Dengan adanya Simpang Susun Semanggi. evaluasi sementara, kami menilai berhasil mengurangi kemacetan 30 persen di empat kupingan eksisting,” kata Priyanto, Kabid Rekayasa Lalu Lintas, Dinas Perhubungan DKI Jakarta, Selasa (8/8/2017).

Jumlah kendaraan yang melintas di empat kupingan eksisting, menurut Priyanto, terdapat 250.000 kendaraan per hari.

Sementara, jumlah kendaraan yang melintas di Simpang Susun Semanggi, sebanyak 20 persen dari 250.000 kendaraan yang melintas di kupingan eksisting.

Yaitu sebanyak 50.000 kendaraan per hari.

“Untuk evaluasi nanti akan kami sampaikan setelah peresmian pada 17 Agustus nanti,” katanya.

Sementara itu, Kasubdit Keamanan dan Keselamatan (Kamsel) Direktorat Lalu Lintas Polda Metro Jaya, AKBP Miyanto, bahwa dengan Simpang Susun Semanggi berdampak mengurai kemacetan di beberapa ruas.

“Sangat membantu di area Semanggi. Pagi hari yang biasanya ngantre, sekarang sangat tidak ngantre ke luar tol depan Polda,” katanya.

Seluruh rambu di Simpang Susun Semanggi pun telah lengkap terpasang. Jumlahnya kurang lebih 20 buah.

“Sudah lengkap larangan sepeda motor, larangan mobil barang, larangan sepeda ontel, sepeda kayuh, gerobak, kemudian khususnya sepeda motor. Jadi khusus mobil saja. Kalau truk gak boleh. Kecuali ada pembangunan LRT, tapi lewat bawah. Rambu pejalan kaki juga tidak boleh. Berlaku kawasan ganjil genap,” katanya.

Simpang Susun Semanggi bisa digunakan bagi kendaraan roda empat yang mengarah dari Tomang atau Slipi, menuju Blok M. Serta dari arah Cawang atau Pancoran, menuju Bundaran HI.

Uji coba dilakukan sejak 29 Juli 2017 yang dibuka oleh Gubernur DKI Jakarta, Djarot Syaiful Hidayat.

Resmikan Simpang Susun Semanggi, Jokowi Puji Ahok-Djarot

NEWS 150x13

PERESMIAN SIMPANG SUSUN SEMANGGI 17-08-2017

Presiden Joko Widodo meresmikan simpang susun Semanggi, di Jakarta, Kamis (17/8/2017) malam.

Jokowi berangkat dari Istana Merdeka, Jakarta, pukul 19.00 WIB setelah rangkaian perayaan dan upacara HUT RI selesai digelar. Pukul 20.00 WIB, iring-iringan kendaraan Jokowi sudah tiba di simpang susun Semanggi.

Selama beberapa menit, Jokowi mendengar penjelasan dari Gubernur DKI Jakarta Djarot Saiful Hidayat, Menteri Pekerjaan Umum dan Perumahan Rakyat Basuki Hadi Muljono dan Menteri Perhubungan Budi Karya.

Ia juga sempat melihat gambar simpang susun Semanggi yang berada di lokasi. Akhirnya, Jokowi pun memencet tombol peresmian.

“Dengan mengucap Bismillahirrahmanirrahim, dengan ini simpang susun Semanggi saya resmikan,” kata Jokowi diikuti bunyi sirine tanda peresmian.

Puji Ahok-Djarot

Dalam kesempatan ini, Jokowi pun sempat memuji kinerja Pemerintah Provinsi DKI Jakarta, sejak dipimpin Gubernur DKI Jakarta Basuki Tjahaja Purnama, hingga kemudian digantikan Djarot Saiful Hidayat.

“Saya sangat menghargai kecepatan pembangunan simpang susun Semanggi, yang cepat sekali, satu tahun. Sangat menghargai sekali kerja gubernur sekarang (Djarot) maupun gubernur sebelumnya (Ahok),” kata Jokowi.

Kepala Negara mengatakan, kawasan Semanggi bukan hanya jantungnya Jakarta, tapi jantung Indonesia. Keramaian yang paling padat ada di Semanggi. Oleh karena itu, simpang susun Semanggi ini sangat penting untuk mengurai kemacetan.

Jokowi sendiri mengaku sudah lebih dari 10 kali bolak-balik simpang susun Semanggi.

“Sekali lagi saya mengapresiasi pekerjaan cepat yang dikerjakan di simpang susun sesuai dengan rencana. Ini dikerjakan PT Wijaya Karya dengan ketepatan waktu,” kata Jokowi sambil mengacungkan jempolnya.

Dalam peresmian ini, selain ditemani Djarot, Jokowi juga didampingi Menteri Pekerjaan Umum dan Perumahan Rakyat Basuki Hadi Muljono dan Menteri Perhubungan Budi Karya.

Difference Engine

TECHNOLOGY

From Wikipedia, the free encyclopedia

 

1024px-Babbage_Difference_Engine

 The London Science Museum’s difference engine, the first one actually built from Babbage’s design. The design has the same precision on all columns, but when calculating polynomials, the precision on the higher-order columns could be lower.

A difference engine is an automatic mechanical calculator designed to tabulate polynomial functions. The name derives from the method of divided differences, a way to interpolate or tabulate functions by using a small set of polynomial coefficients. Most mathematical functions commonly used by engineers, scientists and navigators, including logarithmic and trigonometric functions, can be approximated by polynomials, so a difference engine can compute many useful tables of numbers.

The historical difficulty in producing error-free tables by teams of mathematicians and human “computers” spurred Charles Babbage’s desire to build a mechanism to automate the process.

History


1024px-LondonScienceMuseumsReplicaDifferenceEngine

 Closeup of the London Science Museum’s difference engine showing some of the number wheels and the sector gears between columns. The sector gears on the left show the double-high teeth very clearly. The sector gears on the middle-right are facing the back side of the engine, but the single-high teeth are clearly visible. Notice how the wheels are mirrored, with counting up from left-to-right, or counting down from left-to-right. Also notice the metal tab between “6” and “7”. That tab trips the carry lever in the back when “9” passes to “0” in the front during the add steps (Step 1 and Step 3).

J. H. Müller, an engineer in the Hessian army, conceived of the idea of a difference machine. This was described in a book published in 1786, but Müller was unable to obtain funding to progress with the idea.

Charles Babbage began to construct a small difference engine in 1819 and had completed it by 1822 (Difference Engine 0).He announced his invention on June 14, 1822, in a paper to the Royal Astronomical Society, entitled “Note on the application of machinery to the computation of astronomical and mathematical tables”. This machine used the decimal number system and was powered by cranking a handle. The British government was interested, since producing tables was time-consuming and expensive and they hoped the difference engine would make the task more economical.

In 1823, the British government gave Babbage £1700 to start work on the project. Although Babbage’s design was feasible, the metalworking techniques of the era could not economically make parts in the precision and quantity required. Thus the implementation proved to be much more expensive and doubtful of success than the government’s initial estimate. In 1832 Babbage and Joseph Clement produced a small working model (1/7 of the calculating section of Difference Engine No. 1, which was intended to operate on 20-digit numbers and sixth-order differences) which operated on 6-digit numbers and second-order differences. Lady Byron described seeing the working prototype in 1833: “We both went to see the thinking machine (for so it seems) last Monday. It raised several Nos. to the 2nd and 3rd powers, and extracted the root of a Quadratic equation.” Work on the larger engine was suspended in 1833.

By the time the government abandoned the project in 1842, Babbage had received and spent over £17,000 on development, which still fell short of achieving a working engine. The government valued only the machine’s output (economically produced tables), not the development (at unknown and unpredictable cost to complete) of the machine itself. Babbage did not, or was unwilling to, recognize that predicament. Meanwhile, Babbage’s attention had moved on to developing an analytical engine, further undermining the government’s confidence in the eventual success of the difference engine. By improving the concept as an analytical engine, Babbage had made the difference engine concept obsolete, and the project to implement it an utter failure in the view of the government.

Inspired by Babbage’s difference engine plans, Per Georg Scheutz, with his son Edvard, built several difference engines from 1840 onwards (up to 15-digit numbers and fourth-order differences from 1853 onwards), one of which was sold to the British government in 1859. Martin Wiberg improved Scheutz’s construction but used his device only for producing and publishing printed logarithmic tables.

Babbage went on to design his much more general analytical engine, but later produced an improved “Difference Engine No. 2” design (31-digit numbers and seventh-order differences), between 1846 and 1849. Babbage was able to take advantage of ideas developed for the analytical engine to make the new difference engine calculate more quickly while using fewer parts.

Construction of two working No. 2 Difference Engines

1024px-Difference_engine_Scheutz

Per Georg Scheutz’s third difference engine

During the 1980s, Allan G. Bromley, an associate professor at the University of Sydney, Australia, studied Babbage’s original drawings for the Difference and Analytical Engines at the Science Museum library in London. This work led the Science Museum to construct a working difference engine No. 2 from 1989 to 1991, under Doron Swade, the then Curator of Computing. This was to celebrate the 200th anniversary of Babbage’s birth in 2001. In 2000, the printer which Babbage originally designed for the difference engine was also completed. The conversion of the original design drawings into drawings suitable for engineering manufacturers’ use revealed some minor errors in Babbage’s design (possibly introduced as a protection in case the plans were stolen), which had to be corrected. Once completed, both the engine and its printer worked flawlessly, and still do. The difference engine and printer were constructed to tolerances achievable with 19th-century technology, resolving a long-standing debate as to whether Babbage’s design would actually have worked. (One of the reasons formerly advanced for the non-completion of Babbage’s engines had been that engineering methods were insufficiently developed in the Victorian era.)

The printer’s primary purpose is to produce stereotype plates for use in printing presses, which it does by pressing type into soft plaster to create a flong. Babbage intended that the Engine’s results be conveyed directly to mass printing, having recognized that many errors in previous tables were not the result of human calculating mistakes but from error in the manual typesetting process. The printer’s paper output is mainly a means of checking the Engine’s performance.

In addition to funding the construction of the output mechanism for the Science Museum’s Difference Engine No. 2, Nathan Myhrvold commissioned the construction of a second complete Difference Engine No. 2, which was on exhibit at the Computer History Museum in Mountain View, California until 31 January 2016. It has since been transferred to Intellectual Ventures in Seattle where it is on display just outside the main lobby.

Operation

The difference engine consists of a number of columns, numbered from 1 to N. The machine is able to store one decimal number in each column. The machine can only add the value of a column n + 1 to column n to produce the new value of n. Column N can only store a constant, column 1 displays (and possibly prints) the value of the calculation on the current iteration.

The engine is programmed by setting initial values to the columns. Column 1 is set to the value of the polynomial at the start of computation. Column 2 is set to a value derived from the first and higher derivatives of the polynomial at the same value of X. Each of the columns from 3 to N is set to a value derived from the ( n − 1 ) {\displaystyle (n-1)} first and higher derivatives of the polynomial.

Timing

In the Babbage design, one iteration (i.e., one full set of addition and carry operations) happens for each rotation of the main shaft. Odd and even columns alternately perform an addition in one cycle. The sequence of operations for column n {\displaystyle n} is thus:

  • Count up, receiving the value from column n + 1 {\displaystyle n+1} (Addition step)
  • Perform carry propagation on the counted up value
  • Count down to zero, adding to column n − 1 {\displaystyle n-1}
  • Reset the counted-down value to its original value

Steps 1,2,3,4 occur for every odd column, while steps 3,4,1,2 occur for every even column.

While Babbage’s original design placed the crank directly on the main shaft, it was later realized that the force required to crank the machine would have been too great for a human to handle comfortably. Therefore, the two models that were built incorporate a 4:1 reduction gear at the crank, and four revolutions of the crank are required to perform one full cycle.

Steps

Each iteration creates a new result, and is accomplished in four steps corresponding to four complete turns of the handle shown at the far right in the picture below. The four steps are:

Step 1.

All even numbered columns (2,4,6,8) are added to all odd numbered columns (1,3,5,7) simultaneously. An interior sweep arm turns each even column to cause whatever number is on each wheel to count down to zero. As a wheel turns to zero, it transfers its value to a sector gear located between the odd/even columns. These values are transferred to the odd column causing them to count up. Any odd column value that passes from “9” to “0” activates a carry lever.

Step 2.

Carry propagation is accomplished by a set of spiral arms in the back that poll the carry levers in a helical manner so that a carry at any level can increment the wheel above by one. That can create a carry, which is why the arms move in a spiral. At the same time, the sector gears are returned to their original position, which causes them to increment the even column wheels back to their original values. The sector gears are double-high on one side so they can be lifted to disengage from the odd column wheels while they still remain in contact with the even column wheels.

Step 3.

This is like Step 1, except it is odd columns (3,5,7) added to even columns (2,4,6), and column one has its values transferred by a sector gear to the print mechanism on the left end of the engine. Any even column value that passes from “9” to “0” activates a carry lever. The column 1 value, the result for the polynomial, is sent to the attached printer mechanism.

Step 4.

This is like Step 2, but for doing carries on even columns, and returning odd columns to their original values.

Subtraction

The engine represents negative numbers as ten’s complements. Subtraction amounts to addition of a negative number. This works in the same manner that modern computers perform subtraction, known as two’s complement.

Method of Differences


880px-Difference_engine

 Fully operational difference engine at the Computer History Museum in Mountain View, California

The principle of a difference engine is Newton’s method of divided differences. If the initial value of a polynomial (and of its finite differences) is calculated by some means for some value of X, the difference engine can calculate any number of nearby values, using the method generally known as the method of finite differences. For example, consider the quadratic polynomial

px

with the goal of tabulating the values p(0), p(1), p(2), p(3), p(4), and so forth. The table below is constructed as follows: the second column contains the values of the polynomial, the third column contains the differences of the two left neighbors in the second column, and the fourth column contains the differences of the two neighbors in the third column:

values of the polynomial

The numbers in the third values-column are constant. In fact, by starting with any polynomial of degree n, the column number n + 1 will always be constant. This is the crucial fact behind the success of the method.

This table was built from left to right, but it is possible to continue building it from right to left down a diagonal in order to compute more values. To calculate p(5) use the values from the lowest diagonal. Start with the fourth column constant value of 4 and copy it down the column. Then continue the third column by adding 4 to 11 to get 15. Next continue the second column by taking its previous value, 22 and adding the 15 from the third column. Thus p(5) is 22 + 15 = 37. In order to compute p(6), we iterate the same algorithm on the p(5) values: take 4 from the fourth column, add that to the third column’s value 15 to get 19, then add that to the second column’s value 37 to get 56, which is p(6). This process may be continued ad infinitum. The values of the polynomial are produced without ever having to multiply. A difference engine only needs to be able to add. From one loop to the next, it needs to store 2 numbers—in this example (the last elements in the first and second columns). To tabulate polynomials of degree n, one needs sufficient storage to hold n numbers.

Babbage’s difference engine No. 2, finally built in 1991, could hold 8 numbers of 31 decimal digits each and could thus tabulate 7th degree polynomials to that precision. The best machines from Scheutz could store 4 numbers with 15 digits each.

Initial values

The initial values of columns can be calculated by first manually calculating N consecutive values of the function and by backtracking, i.e. calculating the required differences.

  • Col 1 0 {\displaystyle 1_{0}} gets the value of the function at the start of computation f ( 0 ) {\displaystyle f(0)} .
  • Col 2 0 {\displaystyle 2_{0}} is the difference between f ( 1 ) {\displaystyle f(1)} and f ( 0 ) {\displaystyle f(0)} …

If the function to be calculated is a polynomial function, expressed as

FX

the initial values can be calculated directly from the constant coefficients a0, a1,a2, …, an without calculating any data points. The initial values are thus:

COL

Use of Derivatives


Many commonly used functions are analytic functions, which can be expressed as power series, for example as a Taylor series. The initial values can be calculated to any degree of accuracy; if done correctly the engine will give exact results for first N steps. After that, the engine will only give an approximation of the function.

The Taylor series expresses the function as a sum obtained from its derivatives at one point. For many functions the higher derivatives are trivial to obtain; for instance, the sine function at 0 has values of 0 or ± 1  for all derivatives. Setting 0 as the start of computation we get the simplified Maclaurin series

SUM

The same method of calculating the initial values from the coefficients can be used as for polynomial functions. The polynomial constant coefficients will now have the value

AN

Curve Fitting

The problem with the methods described above is that errors will accumulate and the series will tend to diverge from the true function. A solution which guarantees a constant maximum error is to use curve fitting. A minimum of N values are calculated evenly spaced along the range of the desired calculations. Using a curve fitting technique like Gaussian reduction an N−1th degree polynomial interpolation of the function is found. With the optimized polynomial, the initial values can be calculated as above.

5 Negara Paling Bersih di Dunia

By Travelizt. By. Robit Mikrojul Huda-11/08/2017

Kebersihan adalah salah satu hal penting. Di dunia ini, ada negara yang menghargai kebersihan, ada pula yang acuh akan kebersihan lingkungan wisata. Kebersihan mungkin bisa terkait dengan agama dan tentunya hukum negara. Menjaga kebersihan seharusnya diupayakan demi meminimalkan jumlah sampah di suatu negara.

Bagi wisatawan, mengunjungi dan melihat negara bersih itu sangat mengesankan. Negara yang bersih menunjukkan bahwa negara tersebut menghargai sumber daya alam dan lingkungannya. Bukan itu saja, negara yang bersih tentu menggambarkan kedisiplinan warga negara yang tinggal di dalamnya.

Dilansir dari The Mesh News, berikut 5 negara paling bersih di dunia.

Islandia

Islandia-696x464

Negara Islandia merupakan negara dengan suhu udara yang dingin. Jumlah penduduk di Islandia hingga 2016 hanya sebesar 332 ribu jiwa. Maka dari itu, Islandia sangat fokus menjaga kebersihan lingkungannya. Tak hanya itu, lho, Islandia juga mendapatkan penghargaan sebagai negara paling aman di dunia.

Swedia

Swedia

Jumlah penduduk di negara Swedia pada 2016 mencapai 9,9 juta jiwa. Artinya, jumlah populasi di Swedia hampir sama dengan jumlah penduduk di Jakarta yang kurang lebih 10 juta jiwa. Penduduk di negara ini mayoritas atheis. Meskipun mereka memiliki pandangan lain soal agama, pandangan mereka mengenai kebersihan sama dan menjadi hal utama yang sangat mereka perhatikan. Tahun lalu, indeks kebersihan di Swedia mencapai 89,1. Hal ini menjadikan Swedia sebagai negara paling bersih di dunia tahun 2016.

Swiss

Swiss-min

Swiss menjadi negara tujuan wisata paling favorit di antara pelancong dunia, juga menjadi negara paling terkenal akan wisata alamnya yang menakjubkan. Di negara ini, ada banyak sekali tempat memesona, seperti sungai, pegunungan, hutan, danau maupun tempat-tempat lain. Jumlah penduduknya yang hanya 8 juta jiwa membuat negara ini bisa berfokus dalam menjaga lingkungan dan kebersihannya. Indeks kebersihan di Swiss mendapatkan nilai yang sama dengan negara Swedia.

Norwegia

Norwegia

Daftar selanjutnya adalah Norwegia. Negara ini dikenal sebagai negara yang memiliki banyak pemandangan natural. Ditambah lagi, Norwegia merupakan negara penghasil gas dan minyak. Belum cukup dengan itu, Norwegia juga terkenal akan kebersihannya. Dengan jumlah penduduk hanya 5,2 juta jiwa, pemerintah Norwegia sangat konsen terhadap kebersihan. Negara ini juga dikenal dengan negara yang damai.

Jerman

Jerman

Siapa yang tak kenal dengan Jerman? Negara ini merupakan salah satu negara paling maju di dunia. Jerman menorehkan angka indeks kebersihan mencapai 80,47. Hal ini membuat Negeri Nazi ini masuk dalam daftar negara terbersih di dunia. Hal menarik lainnya, Jerman memiliki pemandangan natural dan pertumbuhan ekonomi yang baik. Pemerintah Jerman memberlakukan aturan yang ketat berkaitan dengan kebersihan di negaranya.

Itulah lima negara paling bersih di dunia. Dari ulasan tadi terlihat kalau mayoritas negara terbersih di dunia berada di wilayah Skandinavia. Lantas, di mana posisi negara-negara di Asia? Ternyata, negara-negara di Asia masih kalah jauh soal menjaga kebersihan. Satu-satunya negara di Asia yang kebersihan negaranya diakui dunia hanya Singapura. Negeri Singa ini berhasil menempati urutan sembilan dunia dalam hal kebersihan.

Sekarang, bagaimana dengan negara kita, Indonesia?

Berada di urutan ke berapa sih Indonesia soal kebersihan? Ternyata, Indonesia berada di urutan 134 dunia.

Ini sangat memprihatinkan dan menunjukkan bahwa masyarakatnya masih acuh terhadap kebersihan, masih senang membuang sampah sembarangan, dan masih banyak pula masyarakat yang memiliki pola hidup kurang sehat.

Jadi, apa yang harus dilakukan?

Yuk, kita mulai dari diri kita sendiri terlebih dahulu. Biasakan membuang sampah pada tempatnya, menjaga kebersihan tempat tinggal dan lingkungan sekitar. Selanjutnya, ajaklah orang-orang terdekat untuk melakukan hal yang sama. Dengan cara ini diharapkan semua orang yang tinggal di negara Indonesia memiliki kesadaran akan pentingnya menjaga kebersihan.