Category Archives: Wifi

Cara Setting & Mengaktifkan LAN Port Modem Router HG8245A

Huawei Echolife HG8245A GPON Fiber Optic Modem Router

Huawei Echolife HG8245A GPON Fiber Optic Modem Router
Huawei Echolife HG8245A GPON Fiberoptik Modem

Pada dasarnya untuk mengaktifkan LAN ports pada Modem Router HG8245A Huawei untuk Jaringan Telkom Speedy sangat susah-susah gampang, karena kita yang awam tidak mengetahui prosedur yang baik dan benar itu seperti apa dan bagaimana. Pada artikel kali ini saya akan membahas tentang Bagaimana Cara Setting dan Mengaktifkan LAN Ports pada Modem Router Huawei HG8245A.

Namun timbul pertanyaan dalam benak kita tentang maksud dan tujuan serta apa guna dan fungsi LANPort yang akan kita aktifkan pada Modem Router tersebut.

Sebenarnya tujuannya sangat simple yaitu agar semua LAN ports dapat digunakan untuk kebutuhan koneksi jaringan kabel LAN beserta internetnya.

Secara default hanya 2 Port LAN saja yang dapat kita gunakan (enable), dan 2 Port lainnya non-aktif (disable) secara total LAN ports pada Modem Router HG8245A berjumlan 4 Ports.

HG8245A terpasang dengan jaringan kabel Fiber Optic dengan 2 unit UTP Patch Cords utk koneksi Notebook dan PC ke jaringan Telkom Speedy dgn Capacity 10MBPS.

Login ke Router HG8245A

Ketik IP Address dari Router HG8245A – – Maka akan muncul Menu Login HG8245A

Masukan data-2 sbb:

  • Account : telecomadmin
  • Password : [sesuai yg diberikan oleh engineer saat intallation]

Setelah Login proses lengkap maka akan muncul Menu di bawah ini.

Nest Step, Pilih LAN utk memilih LAN ports yg akan diaktifkan

Kemudian pastikan bahwa Check Box pada LAN port semuanya diaktifkan seperti pada gambar di atas. Kemudian Klik ‘Apply’.

Next Step pilih WAN. KliK item “2_INTERNET-R-VID_200“.

Pada menu WAN jangan merubah item-2 yg tercantum pada Menu WAN kecuali Item “Binding Options”. Pastikan Check Box ‘LAN1, LAN2, LAN3 dan LAN4 diaktifkan seperti pada gambag di bawah. Kemudian Klik “Apply”.

Sekarang semua Port LAN pada Modem Router HG8245A Huawei kita dapat berfungsi dan aktif jika kita Connect kabel UTP dari LAN Ports Router (LAN1, LAN2,LAN3, LAN4) ke Komputer dan Laptop maka jaringan Internet sudah dapat dinikmati. Jadi Maximum Anda dapat connect 4 unit devices ke Modem Router. Enjoy

Ini adalah tampilan ‘Ethernet Port Information’ setelah Devices di connect ke Modem Router.


Huawei Echolife HG8245A GPON Fiber Optic Modem Router

It is recommened to have minimum of 10 MBPS Speedy Line so that more clients can share the Internet Connection without loosing speed.


Quick Details

Place of Origin: Guangdong, China (Mainland)
Brand Name: Huawei
Model Number: Huawei ONU
Product name: Huawei ONU
Color: White
Condition: Brand New
Power supply: EU, US, UK, AU
Software: English
Pots: 2POTS+4FE+Wi-Fi+1USB
Product Keywords: epon wifi router,epon terminal ont,epon splitter

Product Detail

Product name Huawei ONU
Color White
Condition Brand New
Power supply EU, US, UK, AU
software English
pots 4GE+2voice
Product Keywords Epon wifi router,gpon terminal ont,gpon splitter

Application and Advantage :

HUAWEI HG8245A WIFI GPON ONU with 4 FE + 2 POTS ports , is a high-end home gateway in Huawei FTTH solution.

By using the EPON technology, ultra-broadband access is provided for home and SOHO users.

The HG8245 provides two POTS ports, four FE ports and one WiFi antenna.

The HG8245 A features high-performance forwarding capabilities to ensure excellent experience with VoIP, Internet and HD video services.


  • Port: 2POTS+4GE+1USB+WiFi.
  • Plug-and-play (PnP): Internet, IPTV and VoIP services can be deployed by one click on the NMS and on-site configuration is not required.
  • Remote diagnosis: Remote fault locating is implemented by the loop-line test of POTS ports, call emulation and PPPoE dialup emulation initiated by the NMS.
  • High speed forwarding: GE line rate forwarding in the bridge scenario and 900 Mbit/s forwarding in the NAT scenario.
  • Green energy-saving: 25% power consumption is saved with highly integrated system on chipset (SOC) solution, in which, a single chip integrates with PON, voice, gateway and LSW modules.

How to read RSSI/signal and SNR/noise ratings ?

Source: Speed Guide


Signal (a.k.a. RSSI) is the usable strength of the radio waves, expressed in decibels between 0db (strongest) and -120db (weakest). Smaller negative numbers represent a cleaner/stronger signal.

For wireless data communications,

  • Normal range is -45db to -87db.
  • Anything below -85db is generally unusable, and
  • Over -50db can be considered perfect.


  • RSSI values can be different depending on the chip vendor. Cisco can use range between 0 to -100, Atheros may use 0 to -127. 
  • EIRP (Effective Isotropic Radiated Power) is the actual amount of signal leaving the antenna, measured in db. EIRP = Tx power (dBm) + antenna gain (dBi) – cable loss (dB).

Noise (dBm) in wireless communications is a combination of all unwanted interfering signal sources, such as crosstalk, radio frequency interference, distortion, etc. This value is measured in decibels from zero to -120. The closer this value is to -120, the better, because that means there is little to no interference. Typical environments range between -100db and -80db.

  • Signal-to-Noise Ratio (SNR) is defined as the power ratio between a signal (meaningful information) and the background noise (unwanted signal): SNR = signal / noise
  • The more commonly used SNR margin, as described below is sometimes abbreviated as simply SNR as well.

SNR Margin (dB, a.k.a. noise margin) is the ratio by which the signal exceeds the minimum acceptable amount (minimum SNR) to sustain a certain speed. It is normally measured in decibels. SNR margin is often confused and used interchangeably with SNR. Many DSL modems and wireless devices (notably dd-wrt open source router firmware) use SNR margin, only denoted as “SNR”. SNR margin is simply calculating the difference between signal (RSSI) and noise to get the SNR margin as a positive number expressed in db.

SNR margin = signal(dBm) – noise(dBm)
For example, if singal (RSSI) = -55db, and noise = -85db, then:
(-55db signal) – (-85db noise) = 30 SNR margin

Higher SNR/SNR margin numbers represent cleaner signals, with less noise. Utilizing full 54 Mbps data rate, for example requires at least 25 dB of SNR margin.

Signal Quality this is a percent value between 0% and 100%, with the higher numbers representing better link quality. It is the percentage of the best theoretical ideal quality in regards to your local noise. It can be calculated differently, depending on the OS/device used. It is based on signal strength and SNR margin. Generally, signal quality above 25-30% is usable.


  • The TX(transmit) power of a device, as well as antennas attached to it both factor into the signal level.
  • Some devices can display both the actual SNR, and the SNR margin as a separate value.

How does RSSI (dBm) relate to signal quality (percent) ?

Source: Speed Guide


Depending on your OS and application, WiFi signal strength is represented either as quality in percentage, or an RSSI value in dBm, i.e. -70db. RSSI is usually expressed in decibels from 0 (zero) to -120db and the closer it is to zero, the stronger the signal is. RSSI level less than -80db may not be usable, depending on noise.

While there is no simple precise solution that is used universally, we will try to explain the approximate correlation between signal (RSSI) and quality (percentage).


  • db >= -50 db = 100% quality
  • db <= -100 db = 0% quality

For RSSI signal between -50db and -100db,

  • quality ~= 2* (db + 100)
  • RSSI ~= (percentage / 2) – 100

For example:

  • High quality: 90% ~= -55db
  • Medium quality: 50% ~= -75db
  • Low quality: 30% ~= -85db
  • Unusable quality: 8% ~= -96db


What is RSSI and its acceptable signal strength?

Source: EnGenius


RSSI stands for Received Signal Strength Indicator. It is a measure of power level that a RF client device is receiving from an access point or router.

At larger distances, the signal gets weaker and the wireless data rates get slower, leading to a lower overall data throughput. Signal is measured by the receive signal strength indicator (RSSI), which indicates how well a particular radio can hear the remote connected client radios. For point-to-(multi)point applications, the optimal RSSI on each end of the wireless link is between -40 dBm and -50 dBm to achieve the highest possible data rates.

The best practice is to pre-configure the radios with a transmit power of 17 dBm and validate that a link is properly established (which serves to validate security and MAC address settings as well). Once the access points are physically mounted in place, look at the RSSI readings on each radio and adjust the transmit power settings on each side of the link up or down to get the RSSI to within the -40 dBm to -50 dBm range.

If the signal strength is greater than -35 dBm (typical for wireless links under 50 feet), then the electronic amplifiers get saturated because the signal is too strong, which degrades throughput performance. In such scenarios, turning down the power to minimum (11 dBm) may be insufficient, and if so we recommend purposely misaligning the antennas.

If the signal strength is less than -75 dBm (typical for very long distance shots over 4 miles), it may be difficult to sustain a link reliably or to achieve high throughputs, especially in the presence of external interference. For long distance shots, EnGenius recommends using laser tooling to optimize the antenna alignment so as to maximize the signal.


Received Signal Strength Indication | RSSI

From Wikipedia, the free encyclopedia


Related Posts:

In telecommunications, Received Signal Strength Indicator (RSSI) is a measurement of the power present in a received radio signal

RSSI is usually invisible to a user of a receiving device. However, because signal strength can vary greatly and affect functionality in wireless networking, IEEE 802.11 devices often make the measurement available to users.

RSSI is often derived in the intermediate frequency (IF) stage before the IF amplifier. In zero-IF systems, it is derived in the baseband signal chain, before the baseband amplifier. RSSI output is often a DC analog level. It can also be sampled by an internal ADC and the resulting codes available directly or via peripheral or internal processor bus.

In 802.11 Implementations 

In an IEEE 802.11 system, RSSI is the relative received signal strength in a wireless environment, in arbitrary units. RSSI is an indication of the power level being received by the receive radio after the antenna and possible cable loss. Therefore, the higher the RSSI number, the stronger the signal. Thus, when an RSSI value is represented in a negative form (e.g. −100), the closer the value is to 0, the stronger the received signal has been.

RSSI can be used internally in a wireless networking card to determine when the amount of radio energy in the channel is below a certain threshold at which point the network card is clear to send (CTS). Once the card is clear to send, a packet of information can be sent. The end-user will likely observe a RSSI value when measuring the signal strength of a wireless network through the use of a wireless network monitoring tool like Wireshark, Kismet or Inssider. As an example, Cisco Systems cards have an RSSI maximum value of 100 and will report 101 different power levels, where the RSSI value is 0 to 100. Another popular Wi-Fi chipset is made by Atheros. An Atheros-based card will return an RSSI value of 0 to 127 (0x7f) with 128 (0x80) indicating an invalid value.

There is no standardized relationship of any particular physical parameter to the RSSI reading. The 802.11 standard does not define any relationship between RSSI value and power level in milliwatts or decibels referenced to one milliwatt. Vendors and chipset makers provide their own accuracy, granularity, and range for the actual power (measured as milliwatts or decibels) and their range of RSSI values (from 0 to RSSI maximum).  One subtlety of the 802.11 RSSI metric comes from how it is sampled—RSSI is acquired during only the preamble stage of receiving an 802.11 frame, not over the full frame. 

As early as 2000, researchers were able to use RSSI for coarse-grained location estimates.  More recent work was able to reproduce these results using more advanced techniques.  Nevertheless, RSSI does not always provide measurements that are sufficiently accurate to properly determine the location. 

Received channel power indicator 

For the most part, 802.11 RSSI has been replaced with received channel power indicator (RCPI). RCPI is an 802.11[3] measure of the received radio frequency power in a selected channel over the preamble and the entire received frame, and has defined absolute levels of accuracy and resolution. RCPI is exclusively associated with 802.11 and as such has some accuracy and resolution enforced on it through IEEE 802.11k-2008. Received signal power level assessment is a necessary step in establishing a link for communication between wireless nodes. However, a power level metric like RCPI generally cannot comment on the quality of the link like other metrics such as travel time measurement (time of arrival).

Hedy Lamarr

Hedy Lamarr | Pengembang Wi-Fi Pertama

Hedy Lamarr Biodata


Di zaman yang modern ini tentu Anda sudah tidak asing dengan yang namanya WIFI. Teknologi sudah bukan lagi barang yang mewah karena kita bisa menemukannya di berbagai tempat. Wifi yang merupakan kependekan dari Wireless Fidelity ini adalah jaringan nirkabel komputer yang banyak digunakan mempermudah aktivitas orang-orang.

Awalnya wifi hanya bisa digunakan untuk pengguna perangkat nirkabel dan Local Area Networks (LAN). Namun, kini wifi telah berfungsi lebih luas lagi menjadi teknologi untuk mengakses internet. Dibalik fasiltias wifi yang bisa Anda nikmati sekarang, tahukah anda siapa penemu wifi? Dialah Hedy Lamarr.

Tidak hanya parasnya saja yang cantik namun dia juga memiliki otak brilian sehingga bisa mematenkan produk yang sekarang dikenal dengan nama wifi.

Penemuan Wifi Oleh Si Cantik Hedy Lamarr


Perempuan yang lahir pada 9 November tahun 1914 ini lebih dikenal sebagai aktris papan atas hollywood yang dikenal ketika bermain dalam sebuah film berjudul Exctasy. Film tersebut yang berhasil membuat Hedy Lamarr ini menjadi aktris hollywood terkenal pada masa keemasan MGM.

Ternyata tidak hanya cantik dan pintar dalam berakting, wanita yang lahir di Wina Austria ini juga dinilai memiliki otak yang jenius. Terbukti pada tahun 1942, Hedy Lamarr berhasil mematenkan produknya yang disebut dengan sistem komunikasi rahasia menggunakan frekuensi radio dalam bertukar data. Produk ini dinilai menjadi pondasi yang kuat dan penting dalam teknologi komunikasi.

Perempuan cantik yang memiliki bakat di bidang matematika ini mencoba untuk melakukan perlawanan terhadap Nazi. Hedy Lamarr yang pada masa perang dunia ke II merupakan istri dari Fritz Mandl ini terus mencermati mengenai sistem kerja remote controlled torpedo.

Sayangnya teknologi ini tidak sampai tahap produksi karena pada saat itu masih sangat rentan terhadap jamming yang berasal dari musuh. Hanya ada satu cara dalam memanfaatkan titik kelemahannya yaitu dengan menstabilkan sinkronisasi antara sinyal dari penerima dan pengirim.

Pada tahun 1940, Hedy Lamarr bertemu dengan seorang composser musik yang bernama George Antheil. Pertemuan diantara keduanya tersebut membuat Hedy untuk mengajak George dalam membantunya untuk membuatkan alat yang dapat membantu sinkronisasi.

Lalu George pun membuat sistem berdasarkan frekuensi 88. Frekuensi ini diciptakan berdasarkan dari jumlah tuts pada piano. Agar terhindar dari jamming maka dilakukan penggulungan kertas yang bisa membantu sinkronisasi antara satu sama lain.

Mendapatkan Hak Paten Wi-Fi

Barulah 2 tahun setelah penemuan tersebut membuat Hedy Lamarr mendapatkan hak patennya sebagai penemu Wifi. Pada awalnya nama konsep penemuan tersebut dinamai Frequency Hopping. Namun kini namanya diubah menjadi spread spectrum dengan ide dasar yang sama.

Lalu pada tahun 1997, Hedy Lamarr mendapatkan penghargaan dari Electronic Frontier Foundation dan 3 tahun kemudian tepatnya pada tanggal 19 Januari 2000, perempuan cantik ini menghembuskan napas terakhirnya. Hingga saat ini teknologi Wifi terus dikembangkan.

Hampir semua gadget seperti smartphone, konsol game maupun pemutar audio dan video dibekali fitur Wi-fi sebagai alat untuk tersambung ke internet.

Banyak tempat seperti kantor, bandara, restoran, hotel maupun fasilitas umum lainnya menyediakan fasilitas wifi yang kemudian biasa disebut dengan hotspot. Itulah sedikit informasi mengenai sejarah penemuan wifi oleh Hedy Lamarr. Semoga informasi ini dapat bermanfaat bagi pembaca.

Sumber: penemu_co