Tag Archives: Internet of Things

Mari Mengenal Apa itu Internet of Thing (IoT)

Bicara mengenai Internet of Thing yang biasa disebut dengan IoT tidak ada habisnya karena Internet of Things tidak mempunyai definisi tetap selalu ada saja bahasan entah itu berasal dari suatu keseharian kita hingga benda-benda yang dapt dijadikan perangkat untuk mempermudah aktivitas kita. Namun kita dapat menentukan apakah suatu perangkat merupakan bagian dari IoT atau tidak dengan pertanyaan berikut ini: Apakah produk suatu vendor dapat bekerja dengan produk dari vendor yang lain? Dapatkah suatu kunci pintu dari vendor A berkomunikasi dengan saklar lampu dari vendor B, dan bagaimana jika seorang pengguna ingin memasukkan termostatnya menjadi bagian dari komunikasi tersebut.

Jadi Internet of Thing (IoT) adalah sebuah konsep dimana suatu objek yang memiliki kemampuan untuk mentransfer data melalui jaringan tanpa memerlukan interaksi manusia ke manusia atau manusia ke komputer. IoT telah berkembang dari konvergensi teknologi nirkabel, micro-electromechanical systems (MEMS), dan Internet.

“A Things” pada Internet of Things dapat didefinisikan sebagai subjek misalkan orang dengan monitor implant jantung, hewan peternakan dengan transponder biochip, sebuah mobil yang telah dilengkapi built-in sensor untuk memperingatkan pengemudi ketika tekanan ban rendah. Sejauh ini, IoT paling erat hubungannya dengan komunikasi machine-to-machine (M2M) di bidang manufaktur dan listrik, perminyakkan, dan gas. Produk dibangun dengan kemampuan komunikasi M2M yang sering disebut dengan sistem cerdas atau “smart”. Sebagai contoh yaitu smart kabel, smart meter, smart grid sensor.

Penelitian pada IoT masih dalam tahap perkembangan. Oleh karena itu, tidak ada definisi dari Internet of Things. Berikut adalah beberapa definisi alternatif dikemukakan untuk memahami Internet of Things (IoT), antara lain (id.wikipedia.org):

Menurut Ashton pada tahun 2009 definisi awal IoT adalah Internet of Things memiliki potensi untuk mengubah dunia seperti pernah dilakukan oleh Internet, bahkan mungkin lebih baik. Pernyataan tersebut diambil dari artikel sebagai berikut:

“Hari ini komputer dan manusia, hampir sepenuhnya tergantung pada Internet untuk segala informasi yang semua terdiri dari sekitar 50 petabyte (satu petabyte adalah 1.024 terabyte) data yang tersedia pada Internet dan pertama kali digagas dan diciptakan oleh manusia. Dari mulai magnetik, menakan tombol rekam, mengambil gambar digital atau memadai kode bar.

Diagram konvensional dari Internet meninggalkan router menjadi bagian terpenting dari semuanya. Masalahanya adalah orang memiliki waktu, perhatian dan akurasi terbatas. Mereka semua berarti tidak sangat baik dalam menangkap berbagai data tentang hal di dunia nyata.

Dari segi fisik dan begitu juga lingkungan kita. Gagasan dan informai begitu penting, tetapi banyak lagi hal yang pernting. Namun teknologi informasi saat ini sangat tergantung pada data yang berasal dari orang-orang sehingga komputer kita tahu lebih banyak tentang semua ide dari hal-hal tersebut”

Menurut Casagras (Coordinator and support action for global RFID-related activities and standadisation) mendefinisikan IoT sebagai sebuah infrastruktur jaringan global, yang menghubungkan benda-benda fisik dan virtual melalui eksploitasi data capture dan kemampuan komunikasi. Infrastruktur terdiri dari jaringan yang telah ada dan internet berikut pengembangan jaringannya. Semua ini akan menawarkan identifikasi obyek, sensor dan kemampuan koneksi sebagai dasar untuk pengembangan layanan dan aplikasi ko-operatif yang independen. Ia juga ditandai dengan tingkat otonom data capture yang tinggi, event transfer, konektivitas jaringan dan interoperabilitas.

Source: idcloudhost | 17 JULI 2016

The IoT Challenge: How Can Service Providers Own The Ecosystem?

BY DINESH DHANASEKHARAN. excelacom | FEB 03, 2016

This article first appeared in the Connect-World.

Machine-to-machine communications (M2M) and the Internet of Things (IoT) are completely changing business and consumer relationships in virtually every industry. Today’s era of connected devices allow businesses to reduce expenses via automation and virtualization, and create new revenue streams using product innovation, personalized offerings, and an optimized customer experience.

Our coffee machines, washing machines and printers now have the ability to sense when we are running low on supplies – and automatically re-order our favorite products. Business giants like Coca-Cola are capitalizing on real-time data analytics with smart vending machines, built to find optimal selling times and to schedule maintenance for each of their thousands of locations. Health companies and automotive companies are forming partnerships with technology juggernauts to create prototypes for smart contact lenses that can track blood sugar levels and enable self-driving cars.

This is only the beginning. Within the next five years, M2M communications and IoT solutions technology will advance exponentially – with IDC predicting a worldwide market value of US$7.1 trillion dollars by 2020. New business models and offerings will translate into new revenue streams across all industry types.

Opportunities for Communications and Media Providers

With M2M and IoT capabilities and technology, communications and media providers can gain an advantage in every segment of their business—residential, small business and enterprise:

  • Transportation and fleet management. Telematics systems can help track deliveries, automatically and accurately construct an estimated arrival time available for both the business and the consumer, and help map the quickest routes – increasing productivity, decreasing operations cost (e.g., saving money on gas) and heightening the customer experience.
  • Retail and Finance/Kiosk applications. M2M can provide both point of sale and vending solutions for the small business and enterprises.
  • Manufacturing. Remote monitoring solutions can help manage assets and containers, and track cargo to give the company complete transparency and allow ample time to solve any issues before they affect business.
  • Utilities. Smart meters and smart grid networks can help provide transparent and accurate energy usage for both the consumer and the business.
  • Healthcare and health monitoring. EKG body sensors, pedometers and more can sync and analyze traceable health information from mobile devices to a consumer’s computer as well as healthcare providers.
  • Security. Video surveillance and alarm system monitoring can help improve physical security for both the business and the consumer in real time.
  • Consumer services and appliance control. Smart appliances can help secure, send, receive and track consumer information and service difficulties in real time. Alerts in suspicious financial transactions or data usage can be automatically sent to the consumer – maximizing both safety and the customer experience.

While the benefits of M2M and IoT technology will, without a doubt, evolve the current communications and media industry, there are challenges that may prevent a smooth transition into the connected era. Managing a fragmented market, outdated legacy billing systems, unstandardized transactions and outdated support processes for M2M service delivery can impede progress and delay revenue opportunities if not dealt with in a cost-efficient manner. A controlled, phased approach will ensure a successful shift into this expanding market.

Challenge 1: The Fragmented Marketplace

For M2M and IoT to truly evolve our businesses and ultimately our way of life, these technologies must support and interact with each other. If a self-driving car will one day be able to place phone and video calls directly from the vehicle, how will communications and media providers work to support these features? If smart TVs begin to fully incorporate interactive advertisements – allowing for consumers to buy products directly from their TV sets – what partnerships and regulations will support these purchases? If all these connected devices continue to automatically collect more and more information about the consumer 24/7, how much of this data can be stored and shared with other connected companies?

The current M2M and IoT market is disjointed and borderline chaotic; thousands of different companies are doing thousands of different things in thousands of different ways. Current research suggests that IoT will remain fragmented until at least 2018, as there will be no dominant ecosystem, and as a result, there will be a lack of industry standards for providers.

Today, we are in the “trial and error” phase of creating a unified connected device ecosystem, where errors are many times more probable. While networks within the ecosystem are still beginning to form, vendor, technology producer and service provider co-dependency may falter during the day-to-day operations of large IoT/M2M projects. For M2M and IoT initiatives to reach full potential, integrators must develop a plan to ensure the longevity of their products and connections.

Challenge 2: Outdated Legacy Billing Systems

With greater information and analytic capabilities comes a greater inefficiency to support and organize older billing systems. In legacy systems, information on purchases and customer preferences lagged, and Big Data was not supported.

But in today’s world of Big Data, the vast amounts of information being pushed through may not be able to support this structure. In addition, the amount of data utilized by emerging IoT technology is increasing at an exponential rate, and legacy billing models may not work in the future.

In addition to expanding billing systems on the business side, the systems must also be optimized from a technological standpoint. IoT is made up of billions of micro-transactions, which legacy billing systems are not equipped to handle in real time. Analytics of data patterns, consumer information and usage patterns needed to make crucial billing decisions must be automated.

Challenge 3: Unstandardized Transactions

While IoT and M2M technology is continuing to push for personalized and usage-based billing systems, a solely individual approach may be difficult to achieve. Currently, transactions are not standard in how they measure usage, so customization is generally needed for each customer. Data from IoT and M2M can occur from thousands of different channels and avenues, and properly capitalizing on usage individually is unsustainable. As with managing a fragmented marketplace, standardization is needed without completely erasing customization and stifling the growth of an optimized customer experience.

Challenge 4: Outdated Support Processes for M2M Service Delivery

The technological infrastructure needed to support IoT and M2M connections is greatly underprepared, and existing processing models, service catalogues and operation support processes are not optimized for efficient M2M service delivery. The new network and backend systems for connected devices must be able to process large amounts of information and deliver predictive analytics.

In addition, removing all legacy technology, reconfiguring information in formats specific to only legacy machines, and then purchasing and installing new technology is both time and cost extensive—and unrealistic. To maximize the return on M2M service delivery, new modular-type hardware and software must be integrated with the existing legacy technology.

Solutions: Next Steps for M2M and IoT Integration

To conquer the business, technological and operational challenges at hand, industries must devise a strategy to ensure longevity for both their networks and products.

  • In terms of unifying the fragmented market, companies must continue to join forces, test and administer hardware, software and processes that allow M2M and IoT technologies to get to market quicker and foster extended compatibility.
  • For tackling the outdated billing systems, legacy technology should be gradually updated through automation initiatives and adding specific required modules (not via full replacement), and by increasing data storage capacity with virtualization and cloud services – allowing for more effective data analysis.
  • For the business side, new combination models including both subscription and usage-based packages should be offered to allow for standardization, customization and future growth. Examples include personalized data plans with premium options, or “build your own package” options.
  • The balance for standardizing transactions while still maintaining customization is crucial in the communications and media industry. In this saturated market, differentiation is key and it’s important for providers to rely on predictive analytics to determine the most beneficial options for different groups of consumers.
  • Lastly, businesses must invest in upgrading existing processing models, service catalogues and operational support processes for M2M service delivery.

We’re already seeing this play out in at least one forward-thinking, top tier service provider in the North American market. This provider has created an integrated IoT lab and made it available to technology entrepreneurs, with space for storage, workstations, 3D printing and conference rooms. Internally, the provider has a dedicated IoT/M2M team that is committed to innovation and developing the company’s IoT and M2M business and technology strategy.

M2M and IoT are quickly becoming agents of innovation in today’s business practices, technological development, and in our everyday lives. While connected devices and networks have the potential to turn huge profits for industries in the next few years, a long-term strategy must be in place to support the changes happening now and prepare for the unknown revenue opportunities that the future still holds. For more information on how Excelacom can help you own the ecosystem and overcome the challenges of IoT and M2M, contact us at marketing @ excelacom com.

Penjelasan dan Cara Kerja Konsep Internet of Things

Pengguna internet yang sudah mencapai milyaran orang akan terus bertambah dengan adanya sistem Internet of Things (IoT) dimana bukan hanya perangkat komunikasi dan komputer saja yang terhubung ke internet akan tetapi segala perangkat elektronik akan di kendalikan dengan internet atau melalui wi-fi. Tidak hanya itu, seluruh barang fisik yang dipasang modul elektronik dengan fungsi pengendalian yang terkoneksi dengan internet merupakan konsep Internet of Things secara umum.

Definisi Internet of Things (IoT)

Things artinya segala, artinya apapun yang terhubung ke internet termasuk dalam definisi internet of things (IoT). Artinya semua barang fisik yang dapat di-monitor dan dikendalikan dari jarak jauh menggunakan internet adalah IoT. Konsep IoT ini akan sangat mendorong perkembangan big data dan penggunaan data center di Indonesia, oleh karena itu pemerintah Republik Indonesia sudah merenanakan membangun pusat data ter-sentralisasi.

Konsep dan Cara Kerja Internet of Things

Konsep IoT ini sebetulnya cukup sederhana dengan cara kerja mengacu pada 3 elemen utama pada arsitektur IoT, yakni: Barang Fisik yang dilengkapi modul IoT, Perangkat Koneksi ke Internet seperti Modem dan Router Wirless Speedy seperti di rumah anda, dan Cloud Data Center tempat untuk menyimpan aplikasi beserta data base.

Seluruh penggunaan barang yang terhubung ke internet akan menyimpan data, data tersebut terkumpul sebagai ‘big data’ yang kemudian dapat di olah untuk di analisa baik oleh pemerintah, perusahaan, maupun negara asing untuk kemudian di manfaatkan bagi kepentingan masing-masing. Disinilah peran penting pemerintah Republik Indonesia dalam menjaga ketahanan negara dari sisi sistem informasi.

Fungsi Internet of Things

Dengan prinsip tujuan utama dari IoT sebagai sarana yang memudahkan untuk pengawasan dan pengendalian barang fisik maka konsep IoT ini sangat memungkinkan untuk digunakan hampir pada seluruh kegiatan sehari-hari, mulai dari penggunaan perorangan, perkantoran, rumah sakit, pariwisat, industri, transportasi, konserverasi hewan, pertanian dan peternakan, sampai ke pemerintahan.

Dalam tujuan tersebut, IoT memiliki peran penting dalam pengendalian pemakaian listrik, sehingga pemakaian listrik dapat lebih hemat sesuai kebutuhan mulai dari tingkat pemakaian pribadi sampai ke industri. Tentunya selain untuk tujuan penghematan IoT juga dapat dipakai sebagai sarana kemajuan usaha, dengan sistem monitoring maka kebutuhan usaha dapat lebih terukur.

IoT juga sangat berguna dalam otomatisasi seluruh perangkat yang terhubung ke internet dimana konfigurasi otomatisasi tersebut dapat di sesuaikan dengan mudah tanpa harus datang ke lokasi perangkat tersebut. Baik untuk alasan keamanan untuk wilayah yang tidak mungkin dimasuki manusia, maupun untuk alasan jangkauan terhadap perangkat yang akan di kendalikan tersebut.

Manfaat Internet of Things

Berikut beberapa manfaat teknologi IoT untuk berbagai sektor.

Monitoring Lingkungan

IoT dapat berguna untuk “melihat” kondisi air secara real-time di waduk, irigasi bagi para petani untuk informasi debit air masih banyak atau tinggal sedikit, di laut sebagai mitigasi bencana ke para pelaut dan nelayan. Sehingga memudahkan para pelaku sektor real dalam mempertimbangkan kebutuhan mereka secara lebih tepat.

Kebakaran hutan juga dapat di cegah dengan sistem pencegahan kebakaran yang ter-integrasi, dengan data laporan titik panas dari satelit yang terhubung langsung ke sistem penyemprotan air di titik lokasi kebakaran maka dapat lebih memungkinkan api di padamkan lebih cepat.

Perusahaan Air Minum juga dapat mengukur tingkat kualitas air yang akan di salurkan ke pelanggan sehingga dapat lebih meningkatkan kualitas pelayanan dan dapat mengukur kebutuhan kimia penjernih air.

Pengelolaan Infrastruktur

Seperti kereta api, ‘IoT’ ini dapat dipakai untuk mendeteksi kondisi jalur kereta aman di lintasi atau tidak, sehingga dapat membuka tutup palang pintu kereta secara otomatis tanpa harus khawatir penjaga kereta sedang terlelap tidur.

Demikian untuk lalu lintas jalanan, sistem pengalihan kemacetan dapat di mungkinkan. Artinya jika suatu jalan sedang macet, maka pengguna jalan yang dengan tujuan ke arah jalanan yang macet itu dapat di alihkan secara otomatis dengan sistem rambu otomatis, misal jika jalan arteri macet sedangkan jalan tol dalam kota kosong maka satu jalur di jalan tol dapat di gunakan secara gratis untuk pengendara jalan umum.

Untuk di pelabuhan, IoT dapat digunakan untuk manifest ribuan barang dalam satu kapal atau container, sehingga data manifest dapat lebih cepat tersedia. Dan sangat memungkin untuk sistem monitoring pelabuhan yang berguna baik untuk operator pelabuhan maupun untuk pengguna.

Sensor Peralatan

Kebanyakan biaya konsumsi peralatan di pertambangan di ukur berdasar kapasitas dan pengalaman saja, dengan IoT perusahaan tambang dapat mengukur peralatan mana yang BBM nya sudah mau habis, berapa stok BBM di site, peralatan mana yang olinya harus di ganti, dan lain sebagainya sehingga dapat terukur secara cepat dan tepat. Hal ini sangat memungkinkan karena modul IoT dapat memberikan informasi langsung dari mesin atau peralatan di tambang.Demikian untuk di perkapalan, di pabrik industri dan juga tentunya di infrastruktur IT perkantoran modern. Tentunya teknologi ‘IoT’ sangat bermanfaat dalam mengawasi peralatan yang digunakan untuk operasional perusahaan agar kebutuhan-kebutuhan terhadap perangkat tersebut dapat lebih terukur dan optimal.

Bidang Kesehatan

Kini peralatan kedokteran lebih dapat di hubungkan dengan internet sehingga lebih mudah dalam pengawasan, para dokter secara khusus dapat memantau kondisi pasien tanpa harus melakukan kunjungan ke kamar pasien tersebut. Sehingga biaya kunjungan dokter ke pasien dapat berkurang, bayangkan jika anda di rawat di rumah sakit dan tiap hari di kunjungi dokter hanya diberikan senyum atau di tempelkan tangannya ke jidat anda maka anda harus bayar Rp. 200.000 setiap ‘tindakan medis’ tersebut, tentunya hal tersebut sudah tidak diperlukan lagi jika rumah sakit diwajibkan melakukan sistem pengawasan pasien terpusat, cukup data pasien yang dapat mengarah kritis saja yang secara real-time dapat terus terpantau oleh para dokter bahkan saat mereka main golf sekalipun, sehingga tanggung jawab moril para dokter juga dapat di tingkatkan. Ini selaras dengan revolusi mental.

Otomasi Gedung dan Perumahan

Internet of Things yang merambah pada pengguna elektorik rumahan dapat memudahkan orang untuk berbagai hal. Misal untuk yang paling boros listrik seperti AC split, jika anda lupa mematikannya maka biaya listrik berjalan terus bagaikan air terjun.. dengan aplikasi home management maka anda dapat mematikan AC dan lampu di rumah anda atau menyalakannya kembali sebelum anda tiba di rumah.

Gedung perkantoran dapat lebih mengoptimalkan seluruh fasilitas yang ada, baik untuk penghematan listrik maupun untuk pengendalian gedung terintegrasi. Sebagai contoh, gedung dengan multi tenant dapat lebih meningkatkan keamanannya dengan sistem sidik jari untuk tamu, para tamu untuk kantor tertentu wajib memberikan sidik jarinya ke aplikasi undangan data ke kantor, sehingga ketika tamu kantor tersebut datang maka cukup tempelkan sidik jari maka mulai dari pintu gerbang gedung sampai lift mana yang akan di pakai sudah tersedia secara khusus.

Kesimpulan

Era Big Data sudah masuk ke Indonesia yang akan terus berkembang secara srastis dengan masuknya komponen IoT ke Indonesia. Manfaat Internet of Things ini cukup banyak bagi masyarakat Indonesia, namun perlu pengaturan yang bijak agar tidak menjadi sesuatu yang negatif baik dalam skala perorangan sampai sekala nasional.

Baca Juga: Apa itu Big Data Indonesia?

Pemerintah perlu mengantisipasi kebutuhan ruangan data untuk era big data ini, dengan perencanaan strategis dalam membangun data center yang bebas atau netral dari kepentingan network operator tertentu, tentunya pemerintah dapat secara efektif mencapai tujuan pemenuhan kebutuhan data center tersebut untuk melayani masyarakat lebih baik.

Demikian sedikit penjelasan mengenai Internet of Things (IoT) dan contoh kegunaannya pada beberapa sektor aktifitas di dunia modern.

Source: mobnasesemka. Apr 21, 2016 | Teknologi Terkini

Internet of Things di Perindustrian Kini Berbasis Sistem Operasi Khusus

Kemunculan istilah baru “Industrial Internet of Things” seiring dengan perkembangan teknologi untuk operasional industri

Ilustrasi Industrial Internet of Things / Getty Images

Tiga kali sudah dunia merasakan revolusi industri, di mana uap, listrik, dan komputer menjadi simbol dari perubahan tersebut. Hari ini, kita kembali mencicipi revolusi jilid keempat, yang ditandai dengan entitas baru dengan kemampuan menghubungkan manusia secara cepat, yakni Internet. Kita bisa lihat bukti meledaknya fenomena ini dari begitu masifnya pemanfaatan teknologi interkoneksi ini, serta pesatnya peredaran smartphone.

Menariknya, teknologi yang secara alamiah merupakan media komunikasi ini sekarang tidak cuma mendukung sistem kerja industri dari aspek general affairs dan perdokumenan saja. Ranah teknis juga ‘kebagian’ efek dari kemutakhiran Internet.

Dalam hal ini, Internet of Things ikut andil memberikan perubahan. Konsep teknologi yang mengintegrasikan objek fisik—yang sudah ditanam sensor—dengan jaringan nirkabel ini kini mendapat tempat baru di dunia perindustrian; General Electric (GE) mengistilahkannya Industrial Internet of Things.

Terminologi tersebut terangkat sejalan dengan pengembangan teknologi yang telah diluncurkan GE bernama PREDIX, sistem operasi yang secara khusus ditujukan untuk perindustrian. Bagi GE, PREDIX dapat memudahkan para engineer menciptakan aplikasi, mengambil data dari teknologi industri, dan mengirimnya ke sistem cloud untuk kemudian dianalisis.

Schindler, contohnya. Salah satu raksasa dunia dalam bidang usaha lift ini memanfaatkan PREDIX untuk optimalisasi konsumsi daya yang digunakan oleh lift dan eskalatornya, di mana cloud telah menyimpan data dari utilitas daya.

Kemampuan ini disinyalir akan semakin canggih lagi dengan dukungan produk terbaru GE untuk PREDIX, yaitu PREDIX Edge System yang dapat menanam aplikasi mesin di mana saja sesuai kebutuhan, dari yang terkecil seperti perangkat medis, controller, jaringan atau router, dan menghubungkannya ke cloud.

Jadi, di atas kertas, Schindler nantinya dapat menyimpan komputer kecil di setiap lift untuk menganalisis data secara real-time dan memperbaikinya apabila terjadi kesalahan. PREDIX direncanakan tidak akan lagi membuat penggunanya bergantung pada satu komputer terpusat saja untuk mengoptimalkan operasi; PREDIX akan siap menjalankan sistem 100 aplikasi di tingkat mesin secara langsung.

Teknologi PREDIX diperkuat oleh hadirnya Digital Foundry, sebuah tempat kolaborasi di Paris, yang memungkinkan pelaku industri, akademisi, dan berbagai kalangan yang memiliki ketertarikan pada teknologi untuk berkreasi dan berinovasi.

Majunya inovasi semacam PREDIX nyatanya masih memerlukan dua hal yang dapat membangunnya: kolaborasi dan cloud computing.

Source: DailySocial

Internet of Things (IoT) dalam Revolusi Industri 4.0

Bagaimana Internet of Things berperan dalam Revolusi Industri 4.0

Seperti yang sudah kita ketahui, revolusi industri pertama berbicara tentang terciptanya mesin uap, lalu pada revolusi industri kedua ditandai terjadinya perbaikan proses produksi yang membuat manusia dapat memproduksi barang secara massal (mass production) pada abad ke-19. Setelah itu muncul automasi produksi menggunakan robot dan penggunaan teknologi informasi.
Masuk kepada revolusi industri keempat, menekankan kepada integrasi antar alat menggunakan internet dan pemanfaatan big data.

Apa itu Internet of Things? (IoT)

Sederhananya, Internet of Things adalah alat yang terhubung dengan internet dan saling terintegrasi. Semisal, lampu ruangan yang terkoneksi dengan internet dan bisa terintegrasi dengan smartphone sebagai pengaturnya.

Apa pengaruhnya dalam Revolusi Industri 4.0?

Internet of things sangat erat hubungannya dengan Revolusi Industri 4.0 karena IoT adalah unsur utama dalam revolusi industri 4.0

IoT berpengaruh dalam berbagai macam industri seperti manufaktur, logistik, kesehatan, tata kota, rumah, pertanian, bahkan industri otomotif.

Fungsi utama IoT pada dasarnya sebagai data miner. IoT bekerja mencari dan mengumpulkan berbagai data dari lapangan yang nantinya akan diolah menjadi data yang lebih bermanfaat.

Manufaktur

Pada industri manufaktur, Internet of Things dapat digunakan sebagai penghubung antar mesin produksi agar berjalan dengan efisisen, selain itu sebagai pemantauan alur produksi agar memiliki manajemen yang lebih baik.

Inventaris barang pun tidak luput dari disrupsi IoT, hal ini dapat memberikan keterbukaan informasi serta efisiensi alur barang.

Tata Kota (Smart Cities)

Tata kota tidak luput dari disrupsi internet of things, penggunaannya sangatlah beragam. Internet of things dapat digunakan untuk memantau fasilitas publik, energi, bahkan pengelolaan sampah di kota.

Dengan keberadaan internet of things, pemerintah dapat memberikan layanan yang lebih baik kepada masyarakat.

Pertanian

Dimasa depan, petani tidak ndeso lagi. Internet of things membantu kegiatan pertanian, seperti memantau keadaan tanaman, tanah, cuaca, hingga traktor pintar yang siap memanen hanya melalui smartphone.

Industri Otomotif

Dengan adanya internet of things, saat ini mobil bisa mempunyai kemampuan autonomous driving. Tidak menutup kemungkinan dimasa depan terjadi pertukaran informasi antar mobil.

Tantangan yang dihadapi

Internet of things tentu saja hadir bukan tanpa tantangan, berbagai tantangan muncul dikarenakan hadirnya maupun implementasi dari teknologi tersebut.

  • Manusia tergantikan oleh mesin

Dengan hadirnya internet of things, robot akan semakin powerful dan memiliki kemungkinan untuk mengganti peran manusia. Hal ini akan menimbulkan kesenjangan pada masyarakat.

  • Keamanan data

Seperti dalam artikel 2050: Our Future, data merupakan aset yang sangat penting dalam bisnis. Data dapat diolah yang akan memberikan informasi bermanfaat kepada manusia maupun mesin itu sendiri.

Tentu saja, hal ini mengundang orang-orang untuk berusaha meretas data. Oleh sebab itu, keamanan data menjadi tantagan yang sangat berat di era revolusi industri 4.0

  • Privasi dan Etika

Data mining yang berlebihan akan menimbulkan permasalahan privasi dan etika yang serius. Terutama pada internet of things yang digunakan memonitor lingkup personal.

Semisal, smart home yang menggunakan teknologi IoT. Fitur voice recognition secara terus menerus merekam percakapan yang ada di dalam ruangan, tentu saja tidak semua orang akan nyaman dengan hal tersebut.

  • Mahal

Untuk implementasi teknologi IoT perlu diakui masih mahal. Hal ini dibuktikan dengan kasus Tesla yang proses produksinya terlalu kompleks dikarenakan otomatisasi robot terlalu canggih. Hal ini berakibat biaya yang dikeluarkan Tesla sangatlah besar.

Peluang?

Kecerdasan buatan (Artificial intelligence) menggunakan banyak data untuk melakukan machine learning.

Dengan bantuan internet of things, data yang masuk akan lebih banyak dan akan berakibat kepada proses bisnis yang lebih efisien.

  • Optimalisasi Kecepatan

Proses bisnis akan semakin cepat dan efektif, tidak perlu proses yang panjang.

Optimalisasi Adaptabilitas

Lambat laun Internet of things akan semudah untuk diadaptasi, harganya semakin murah namun performanya semakin tinggi.

Optimalisasi Reliabilitas

Internet of things akan semakin akurat dalam memberikan data. Dengan begitu raw data akan semakin akurat berakhir kepada kecerdasan buatan yang semakin cerdas.

Kesimpulan

Tentu saja, saat ini kita sudah masuk kepada revolusi industri 4.0 yang jauh berbeda dari revolusi industri lainnya dan Internet of things berperan sebagai data miner dalam revolusi industri 4.0, hal ini menjadi unsur yang sangat penting disamping data processing.

Perbedaan utama dibandingkan ketiga revolusi industri sebelumnya adalah penggunaan teknologi yang sangat terkini (cutting-edge tech)
Teknologi tersebut merubah berbagai industri secara masif. Membuat semua industri menjadi data-driven atau berdasar dengan data.

Semua perkembangan teknologi ini menghadirkan tantangan-tantangan baru yang harus siap dihadapi oleh industri.
Peluang IoT sebagai optimalisasi industri pun juga siap untuk dinikmati oleh industri.

Tanpa adanya Internet of things, revolusi industri 4.0 tidak akan terjadi.

Source: medium. Muhammad Fathi Rauf

Mengenal Lebih Dekat Apa Itu IoT

Jika kamu pernah nonton film Iron Man, Acer yakin spAcer akan iri dengan kehidupan Tony Stark. Bagaimana tidak? Tony memiliki asisten virtual super keren bernama Jarvis (Just A Rather Very Intelligent System) yang membantunya untuk memenuhi segala kebutuhan Tony hanya melalui perintah. Berkat kehadiran Jarvis, rumah Tony Stark lebih dari sekadar tempat tinggal biasa. Jarvis juga membuat rumah memiliki antarmuka (interface) yang begitu canggih.

Kecanggihan teknologi yang dimiliki Jarvis ini dikenal dengan konsep dari Internet of Thing (IoT). Artinya, konektivitas tak lagi terbatas antarmanusia atau antarsistem, melainkan mampu menghubungkan segala benda atau perangkat apapun. Keren kan?

Dilansir dari Wikipedia dot org, IoT merupakan sebuah konsep yang bertujuan untuk memperluas manfaat dari konektivitas internet yang tersambung terus-menerus. Namun secara sederhana, Internet of Thing (IoT) bisa diartikan sebagai “memanusiakan mesin”, yaitu ketika benda-benda di sekitar kamu dapat berkomunikasi antara satu sama lain melalui sebuah jaringan internet dan dapat dimonitor dan dikendalikan dari jarak jauh oleh penggunanya.

Di Indonesia, pertumbuhan IoT sudah menunjukkan ke arah positif karena didukung oleh konektivitas jaringan yang cukup memadai dan diiringi pesatnya pertumbuhan penetrasi perangkat mobile di Indonesia. Meskipun menimbulkan pro dan kontra, IoT sebenarnya memudahkan segala aktivitas manusia.

Contoh sederhananya, kamu bisa mengendalikan kulkas di dapur dari kantor atau tempat lainnya. Kulkas nantinya akan memberitahukan pemiliknya melalui notifikasi tentang makanan dan minuman apa saja yang telah habis dan harus diisi. Selanjutnya kulkas ini juga dapat memberikan saran supermarket online mana yang memiliki harga yang paling ekonomis dan sekaligus terintegrasi dengan sistem pembayaran. Dengan begitu, apa yang kamu lakukan adalah melakukan approval dan menentukan waktu pengantaran barang. Jadi, kamu tidak perlu lagi meluangkan waktu untuk mencatat barang apa saja yang habis sekaligus mendapatkan harga paling ekonomis. Bahkan, kamu tidak perlu pergi ke Supermarket untuk berbelanja. Sangat efisien sekali, bukan?

Selain itu, IoT juga dapat digunakan untuk sektor lain seperti lingkungan, pangan, penelitian, kesehatan, tata kota, dan sebagainya. IoT juga menjadi salah satu pendukung untuk pengembangan konsep Smart City yang tengah digalakkan oleh beberapa pemimpin daerah di Indonesia. Dengan teknologi digital, pemerintah bisa menerima pengaduan warga secara real time terkait masalah banjir, kemacetan, pelayanan publik hingga kesehatan. Pada gilirannya, konsep ini dapat meningkatkan kualitas kehidupan masyarakat.

Nah, sekarang kamu sudah tau bagaimana kegunaan IoT itu sebenarnya. Memudahkan segala aktivitasmu sehari-hari, bukan? Yuk, segera manfaatkan inovasi digital terbaru ini.

Source: acer ID. November 22, 2016

Internet of Things: Panduan Lengkap

Perkembangan teknologi semakin pesat dari waktu ke waktu. Dulu, mungkin kita hanya bisa berimajinasi atau menonton film-film fiksi sains soal teknologi canggih. Kini, berbagai peralatan/mesin sudah dilengkapi dengan kecanggihan teknologi yang bisa memudahkan pekerjaan kita sehari-hari. Mulai dari mobil pintar (smart car) yang bisa jalan sendiri ke berbagai tujuan tanpa pengemudi manusia, hingga mesin pintar semacam Alexa yang bisa bersuara mengingatkan Anda untuk melakukan ini-itu sesuai jadwal. Seluruh teknologi terbaru ini adalah bagian dari Internet of Things.

Apa itu Internet of Things?

Internet of Things adalah suatu konsep dimana objek tertentu punya kemampuan untuk mentransfer data lewat jaringan tanpa memerlukan adanya interaksi dari manusia ke manusia ataupun dari manusia ke perangkat komputer.

Internet of Things leih sering disebut dengan singkatannya yaitu IoT. IoT ini sudah berkembang pesat mulai dari konvergensi teknologi nirkabel, micro-electromechanical systems (MEMS), dan juga Internet.

IoT ini juga kerap diidentifikasikan dengan RFID sebagai metode komunikasi. Walaupun begitu, IoT juga bisa mencakup teknologi-teknologi sensor lainnya, semacam teknologi nirkabel maupun kode QR yang sering kita temukan di sekitar kita.

Apa saja kemampuan dari IoT? Adapun kemampuannya bermacam-macam contohnya dalam berbagi data, menjadi remote control, dan masih banyak lagi yang lainnya. Sebenarnya fungsinya termasuk juga diterapkan ke benda yang ada di dunia nyata, di sekitar kita. Apa saja contohnya? Contohnya adalah untuk pengolahan bahan pangan, elektronik, dan berbagai mesin atau teknologi lainnya yang semuanya tersambung ke jaringan lokal maupun global lewat sensor yang tertanam dan selalu menyala aktif.

Jadi, sederhananya istilah Internet of Things ini mengacu pada mesin atau alat yang bisa diidentifikasikan sebagai representasi virtual dalam strukturnya yang berbasis Internet.

Cara Kerja Internet of Things

Cara Kerja Internet of Things itu seperti apa? Sebenarnya IoT bekerja dengan memanfaatkan suatu argumentasi pemrograman, dimana tiap-tiap perintah argumen tersebut bisa menghasilkan suatu interaksi antar mesin yang telah terhubung secara otomatis tanpa campur tangan manusia dan tanpa terbatas jarak berapapun jauhnya.

Jadi, Internet di sini menjadi penghubung antara kedua interaksi mesin tersebut. Lalu di mana campur tangan manusia? Manusia dalam IoT tugasnya hanyalah menjadi pengatur dan pengawas dari mesin-mesin yang bekerja secara langsung tersebut.

Adapun tantangan terbesar yang bisa menjadi hambatan dalam mengkonfigurasi IoT adalah bagaimana menyusun jaringan komunikasinya sendiri. Mengapa itu menjadi sulit dan problematik? Ini sebenarnya dikarenakan jaringannya sangatlah kompleks. Selain itu, IoT juga sesungguhnya sangat perlu suatu sistem keamanan yang cukup ketat. Disamping masalah tersebut, biaya pengembangan IoT yang mahal juga sering menjadi penyebab kegagalannya. Ujung-ujungnya, pembuatan dan pengembangannya bisa berakhir gagal produksi.

Ketahui lebih lanjut soal IoT dengan menonton tayangan penjelasan berikut:

Unsur-unsur Pembentuk IoT

Ada beberapa unsur pembentuk IoT yang mendasar termasuk kecerdasan buatan, konektivitas, sensor, keterlibatan aktif serta pemakaian perangkat berukuran kecil. Berikut, kami akan menjelaskan masing-masing unsur pemberntuk tersebut dengan singkat:

Kecerdasan Buatan (Artificial Intelligence/AI) − IoT membuat hampir semua mesin yang ada menjadi “Smart”. Ini berarti IoT bisa meningkatkan segala aspek kehidupan kita dengan pengembangan teknologi yang didasarkan pada AI. Jadi, pengembangan teknologi yang ada dilakukan dengan pengumpulan data, algoritma kecerdasan buatan, dan jaringan yang tersedia. Sebenarnya ya contohnya bisa jadi mesin yang tergolong sederhana semacam meningkatkan/mengembangkan lemari es/kulkas Anda sehingga bisa mendeteksi jika stok susu dan sereal favorit Anda sudah hampir habis, bahkan bisa juga membuat pesanan ke supermarket secara otomatis jika stok mau habis. Penerapan kecerdasan buatan ini memang sangatlah menarik.

  • Konektivitas − Dalam IoT, ada kemungkinan untuk membuat/membuka jaringan baru, dan jaringan khusus IoT. Jadi, jaringan ini tak lagi terikat hanya dengan penyedia utamanya saja. Jaringannya tidak harus berskala besar dan mahal, bisa tersedia pada skala yang jauh lebih kecil dan lebih murah. IoT bisa menciptakan jaringan kecil tersebut di antara perangkat sistem.
  • Sensor − Sensor ini merupakan pembeda yang membuat IoT unik dibanding mesin canggih lainnya. Sensor ini mampu mendefinisikan instrumen, yang mengubah IoT dari jaringan standar dan cenderung pasif dalam perangkat, hingga menjadi suatu sistem aktif yang sanggup diintegrasikan ke dunia nyata sehari-hari kita.
  • Keterlibatan Aktif (Active Engagement) − Engangement yang sering diterapkan teknologi umumnya yang termasuk pasif. IoT ini mengenalkan paradigma yang baru bagi konten aktif, produk, maupun keterlibatan layanan.
  • Perangkat Berukuran Kecil − Perangkat, seperti yang diperkirakan para pakar teknologi, memang menjadi semakin kecil, makin murah, dan lebih kuat dari masa ke masa. IoT memanfaatkan perangkat-perangkat kecil yang dibuat khusus ini agar menghasilkan ketepatan, skalabilitas, dan fleksibilitas yang baik.

Sejarah dan Perkembangannya

Mengingat bahwa IoT ini adalah teknologi canggih yang mampu melakukan transfer data lewat jaringan dengan interaksi yang mudah, masa depan dari pengembangannya jadi sangat menjanjikan. Kehidupan manusia sehari-harinya bisa dioptimalkan dan dipermudah dengan sensor cerdas dan peralatan pintar yang berbasis internet ini.

Awalnya, internet itu sendiri mulai terkenal di tahun 1989. Lalu pada tahun 1990, seorang peneliti bernama John Romkey membuat suatu perangkat yang kala itu tergolong canggih. Perangkatnya adalah pemanggang roti yang bisa dinyalakan atau juga dimatikan lewat internet.

Kemudian di tahun 1994, seseorang bernama Steve Mann menciptakan WearCam, dan pada tahun 1997-nya si Paul Saffo menjelaskan secara singkat mengenai penemuannya soal teknologi sensor dan masa depannya nanti. Barulah di tahun 1999 Kevin Ashton membuat konsep Internet of Things. Kevin ini adalah Direktur Auto IDCentre dari MIT.

Di tahun yang sama, yaitu 1999, ditemukan mesin yang sistemnya berbasis Radio Frequency Identification (RFID) secara global. Nah, penemuan inilah yang jadi awal kepopuleran dari konsep IoT. Orang-orang, terutama pakar teknologi jadi berlomba-lomba mengembangkan teknologinya sesuai konsep IoT.

Lalu, di tahun 2000, brand ternama LG mengumumkan rencananya untuk membuat dan merilis teknologi IoT yaitu lemari pintar. Lemari pintar ini mampu menentukan apakah ada stok makanan yang perlu diisi ulang dalam lemarinya.

Kemudian, di tahun 2003, FRID yang sebelumnya telah disebutkan, mulai ditempatkan pada posisi penting dalam masa pengembangan teknologi di Amerika, melalui Program Savi. Pada tahun yang sama pula, perusahaan ritel raksasa Walmart mulai menyebarkan RFID di semua cabang tokonya yang tersedia di berbagai belahan dunia.

IoT kembali terkenal di tahun 2005, yaitu pada saat media-media ternama semacam The Guardian dan Boston Globe mulai mengutip banyak sekali dari artikel ilmiah dan proses pengembangan IoT. Hingga tahun 2008, berbagai macam perusahaan setuju untuk meluncurkan IPSO untuk memasarkan penggunaan IP dalam jaringan bagi “Smart Object” yang juga bertujuan mengaktifkan IoT itu sendiri.

Macam-macam Bidang Penerapan IoT

Pertanian

Ada berbagai macam pengaplikasani IoT di sektor pertanian. Beberapa diantaranya seperti mengumpulkan data soal suhu, curah hujan, kelembaban, kecepatan angin, serangan hama, dan muatan tanah. Data-data tersebut bisa dipakai buat mengotomatisasi teknik pertanian. Kemudian, bisa juga dipakai untuk mengambil keputusan (decision making) berdasarkan informasi yang ada demi meningkatkan kualitas dan kuantitas, meminimalkan risiko dan limbah, serta mengurangi upaya yang diperlukan dalam mengelola tanaman. Sebagai contoh, petani sekarang sudah bisa memantau suhu dan kelembaban tanah dari jauh, dan bahkan menerapkan data yang diperoleh IoT untuk program pemupukan yang lebih presisi.

Energi

Sejumlah besar perangkat yang memakan energi (semacam switch, outlet listrik, lampu, televisi, dll.) kini sudah bisa terintegrasi dengan konektivitas internet. Lalu apa dampaknya? Integrasi itu memungkinkan mesin-mesin ataupun jaringan untuk berkomunikasi dalam menyeimbangkan pembangkitan listrik serta penggunaan energi yang lebih hemat maupun efektif. Perangkat ini juga bisa memungkinkan akses remote control dari pengguna, atau bisa juga manajemen dari satu pusat lewat interface yang berberbasis cloud. Selain itu, bisa juga mengaktifkan fungsi semacam penjadwalan (misalnya untuk menyalakan/mematikan mesin pemanas, mengendalikan oven, mengubah kondisi pencahayaan dari terang menjadi redup hingga ke gelap, dan lain sebagainya). Jadi dengan IoT di bidang ini, sistem bisa berkumpul dan bertindak berdasarkan informasi yang terkait dengan energi dan daya demi meningkatkan efisiensi produksi dan distribusi listrik.

Lingkungan

Aplikasi pemantauan lingkungan dari IOT biasanya pakai sensor dalam membantu terwujunya perlindungan lingkungan. Contohnya seperti apa? Penerapannya misalnya dengan memantau kualitas udara atau air, kondisi atmosfer atau tanah, bahkan juga bisa mencakup pemantauan teerhadap satwa liar dan habitatnya. Tak hanya itu sebenarnya. Bisa juga IoT ini dimanfaatkan dalam penanggulangan bencana semacam sistem peringatan dini Tsunami atau gempa bumi. Hal ini tentunya bisa sangat membantu. Perangkat IoT dalam hal ini berarti punya jangkauan geografis yang sangat luas serta mampu bergerak.

Otomatisasi Rumah

Perangkat IoT juga bisa dipakai untuk memantau dan mengontrol sistem mekanis, elektrik, dan elektronik yang digunakan di berbagai jenis bangunan (misalnya, industri atau juga rumah Anda sebagai tempat tinggal). Alat atau pengembangan IoT ini juga bisa memantau penggunaan energi secara real-time untuk mengurangi konsumsi energi. Tak hanya itu, bahkan bisa juga melakukan pemantauan terhadap para penghuninya. Contohnya? Begitu Anda masuk ke rumah di malam hari, lampu menyala. Kemudian begitu Anda masuk ke jadwal tidur, lampu akan mati secara otomatis. Pagi hari, taman Anda akan disiram air oleh mesin penyiram otomatis. Begitu juga dengan kulkas Anda yang bisa memesan stok makanan sendiri ketika habis. Semuanya bisa terintegrasi menjadi sistem rumah pintar.

Medik dan Kesehatan

Dalam dunia medik dan kesehatan, IoT akan dikembangkan terus. Bahkan, nanti di masa yang akan datang, seluruh rekaman kesehatan Anda bisa ditransfer langsung ke tenaga medis maupun Rumah Sakit. Data-data yang bisa dideteksi dan dikirimkan semacam detak jantung, tingkat gula dalam darah, dan lain sebagainya. Smartphone/ponsel pribadi Anda akan jadi alat pemantau kesehatan yang canggih dan tentunya bisa sangat membantu Anda. Perangkat IoT yang ada bahkan bisa memberikan peringatan saat kesehatan Anda menurun atau memberikan saran pengobatan dan bahkan membuat janji temu dengan dokter. Sebenarnya beberapa teknologi canggih IoT telah dikembangkan dan diterapkan di bidang ini. Contohnya, tempat tidur pintar yang bisa otomatis memberitahukan dokter/perawat ketika pasien hendak bangun dari tempat tidur dll. Menurut laporan dari Goldman Sachs di tahun 2015, perangkat kesehatan semacam ini bisa menyelamatkan negara dari anggaran kesehatan yang berlebihan.

Transportasi

IoT bisa membantu manusia dalam integrasi komunikasi, kontrol, dan pemrosesan informasi pada berbagai sistem transportasi yang ada. Penerapan IoT memang terus-menerus meluas ke berbagai aspek sistem transportasi. Tak hanya teknologi mesinnya yaitu kendaraan, tetapi juga infrastruktur, serta menyinggung fungsi pengemudi/penggunanya. Interaksi dinamis yang terjadi antara komponen-komponen itu berasal dari sebuah sistem transportasi. Sistem tersebut memungkinkan komunikasi antar dan intra kendaraan, kontrol lalu lintas yang lebih efektif karena tergolong cerdas, parkir yang lebih cerdas, manajemen logistik dan armada, kontrol kendaraan, dan juga terkait faktor keselamatan maupun bantuan di jalan.

Internet of Things PDF

Untuk belajar lebih dalam soal IOT dan mengenali apa saja tantangan pengembangannya bagi manusia, berikut adalah berbagai jurnal IOT dalam bentuk PDF:

Simpulan

Artikel panduan IOT ini merupakan bentuk komitmen kami sebagai provider hosting murah dan vps profesional , yang punya misi membantu Anda sukses di era digital. Kami kerap membagikan info-info menarik terkini terkait teknologi, khususnya pengembangan website dan pengembangan bisnisnya. Jangan lupa subscribe dan meninggalkan komentar Anda jika artikel ini telah membantu Anda memahami IOT. Selamat mengembangkan diri Anda dan semoga berhasil ya!

Source: dewaweb | Yasha – August 3, 2018

Penggunaan Internet of Things (IoT) untuk pengembangan Smart City di Indonesia

Bandung Command Center

Martin Kunardi adalah Founder Geeknesia, pelopor platform Internet of Things (IoT) di Indonesia. Artikel ini diterbitkan ulang dari blog Geeknesia dengan izin Martin.

Beberapa bulan terakhir ini, kita sering mendengar atau membaca tentang konsep Smart City yang sedang dicanangkan oleh beberapa kepala daerah di Indonesia, seperti Ridwan Kamil (Walikota Bandung) dan Basuki Tjahaja Purnama (Gubernur Jakarta). Topik ini begitu “hot” sehingga sering sekali diliput oleh wartawan dari berbagai media cetak dan elektronik.

Mulai terlihat pula bahwa konsep Smart City ini akan mulai diikuti oleh kepala-kepala pemerintahan di daerah lainnya, seperti Banyuwangi, Banda Aceh, dan Balikpapan.

Sebelum kita memulai pembahasan Smart City, ada baiknya kita mendefinisikan terlebih dahulu arti dari Smart City yang akan kita bicarakan di artikel ini. Menurut Wikipedia, definisi dari Smart City adalah:

A smart city (also smarter city) uses digital technologies to enhance performance and well being, to reduce costs and resource consumption, and to engage more effectively and actively with its citizens. Key ‘smart’ sectors include transport, energy, healthcare, water and waste.

Secara kasar, definisi dari Smart City itu begitu luas mencakup berbagai macam keseluruhan teknologi digital yang dapat meningkatkan kualitas kehidupan, mengurangi biaya dan sumber konsumsi, dan dapat meningkatkan interaksi aktif antara kota dan warganya secara efektif. Perlu saya garisbawahi bahwa cakupan teknologi digital yang dapat diterapkan untuk pengembangan Smart City sangat luas dan tidak dibatasi. Penerapan dan aplikasi dari teknologi tersebut juga sangat bervariasi dan dapat diterapkan di semua bidang selama tujuan akhirnya tersebut tercapai. Beberapa contoh penerapan konsep Smart City di Indonesia:

  • E-government
  • E-budgeting
  • Jakarta Smart City
  • Command Center di Bandung
  • E-village di Banyuwangi
  • Portal Pengadaan Nasional oleh INAPROC
  • Layanan Paspor Online oleh Dirjen Imigrasi RI
  • Situs LAPOR oleh UKP-PPP (salah satu Unit Kerja Presiden)

IoT untuk kembangkan Smart City

Lalu apakah Smart City ini ada kaitannya dengan IoT? Ya, 100 persen sangat berhubungan: IoT merupakan salah satu alat teknologi yang dapat digunakan untuk pengembangan aplikasi Smart City. Saya akan memberikan tiga contoh penggunaan teknologi IoT pada Smart City:

  • Pada aplikasi Informasi Banjir Online, selain mengandalkan laporan warga, sensor-sensor banjir yang dapat mengukur ketinggian air secara real-time disebarkan ke seluruh wilayah kota sehingga informasi dapat diinformasikan ke Command Center secara cepat dan selanjutnya langsung tertangani oleh Dinas terkait.
  • Sistem Notifikasi Gempa dan Tsunami. Beberapa kejadian bencana alam di Indonesia memakan korban jiwa begitu banyak. Jumlah korban jiwa dapat dikurangi secara signifikan apabila Early Warning System diterapkan secara benar dan tepat sasaran. Sensor-sensor yang ditempatkan di daerah rawan bencana alam dapat memberikan informasi secara langsung kepada warga sekitar lokasi rawan gempa, longsor, atau tsunami dalam hitungan detik.
  • Sistem yang tak kalah menariknya adalah sistem Smart Parking. Pada sistem ini, sensor parkir ditaruh di tempat parkir umum. Pemakaian sistem Smart Parking ini dapat membantu pemerintah kota memantau dan mengendalikan pendapatan daerah dari parkir. Keuntungan yang bisa dirasakan langsung oleh masyarakat berupa pemeriksaan status dari parkir yang tersedia dan sistem booking atau bayar parkir online.
Diagram arsitektur dari suatu sistem Internet Of Things

Sistem seperti ini sangat menarik dan akan sangat berguna apabila dapat diterapkan di seluruh daerah di Indonesia, tidak terbatas hanya perkotaan. Bagaimanapun, investasi untuk Smart City IoT lebih mahal daripada aplikasi software semata. Teknologi tersebut memerlukan CAPEX yang cukup besar berupa infrastruktur dan hardware. Oleh karena itu, “barrier to implement” atau halangan untuk menerapkan teknologi ini jauh lebih tinggi. Pemerintah Daerah tidak bisa hanya sendirian menerapkannya, melainkan harus bersama-sama dengan semua pihak termasuk pihak akademisi, swasta, dan komunitas guna membentuk suatu Smart City Ecosystem yang integrated and sustainable.

Apabila para inovator dan teknopreneur dalam negeri diberi kesempatan untuk berkreasi dan berpartisipasi di ekosistem ini, maka Industri Rekayasa Elektronika Indonesia yang selama ini tertidur dan industri kreatif berbasis IT lainnya akan mendapatkan kesempatan untuk lebih berkembang. Mimpi untuk mewujudkan Silicon Valley di Indonesia akan menjadi kenyataan, mengingat potensi pasar, serta jumlah perkotaan dan pedesaan di Indonesia yang begitu besar.

Apakah kita akan terus menjadi tamu di negeri sendiri? Keputusan ini ada di tangan kita semua.

(Diedit oleh Lina Noviandari)

Pengertian Internet of Things (IoT)

Sebelum berlanjut ke pembahasan yang lebih jauh mengenai IoT, pada artikel ini akan memberikan gambaran umum tentang bagaimana IoT mencoba untuk merevolusikan dunia. IoT telah menciptakan jaringan raksasa dimana setiap perangkat terhubung satu sama lain dan mempunyai kemampuan untuk saling berkomunikasi satu sama lain. Hal tersebut mengarahkan sistem automation menuju ke level selanjutnya dimana setiap perangkat dapat berkomunikasi satu sama lain dan menentukan keputusan sendiri tanpa intervensi manusia. Secara tidak sadar, IoT telah menjadi aspek penting dalam kehidupan sehari-hari manusia.

Sejarah singkat IoT

Pertama dimulai dengan memperkenalkan seseorang yang telah menciptakan istilah “Internet of Thing”. Istilah “Internet of Thing” (IoT) telah diperkenalkan oleh Kevin Ashton pada presentasi kepada Proctor & Gamble di tahun 1999. Kevin Ashton merupakan co-founder dari Auto-ID Lab MIT. Kevin Ashton mempiornisrkan RFID (digunakan pada bar code detector) untuk supply-chain management domain. Dia juga telah memulai Zensi, sebuah perusahaan yang membuat energi untuk teknologi penginderaan dan monitoring.

Berikut adalah kutipan dari Kevin Ashton yang di tulis pada tahun 2009 untuk jurnal RFID yang akan membantu dalam memahami tentang inti dari IoT:

“If we had computers that knew everything there was to know about things—using data they gathered without any help from us—we would be able to track and count everything, and greatly reduce waste, loss and cost. We would know when things needed replacing, repairing or recalling, and whether they were fresh or past their best.”

“We need to empower computers with their own means of gathering information, so they can see, hear and smell the world for themselves, in all its random glory.”

Dari kutipan diatas dapat memberikan ide tentang ideologi yang melatarbelakangi dari pengembangan IoT.

Apa itu IoT?

“Thing” pada konteks IoT dapat bberupa perangkat apa saja dengan sendor internal apa pun yang memiliki kemampuan untuk mengumpulkan dan mentransfer data melalui jaringan tanpa intervensi manual. Teknologi tertanam dalam objek membantu perangkat IoT untuk berinteraksi dengan keadaan internal dan lingkungan eksternal, yang pada gilirannya membantu dalam proses pengambilan keputusan.

Singkatnya, IoT adalah konsep yang menghubungkan semua perangkat ke internet dan memungkinkan perangkat IoT berkomunikasi satu sama lain melalui internet. IoT adalah jaringan raksasa dari perangkat yang tehubung – semua yang mengumpulkan dan membagikan data tentang bagaimana suatu oerangkat tersebut digunakan dan lingkungan dimana perangkat tersebut di operasikan.

Dengan melakukan itu, tiap perangkat akan belajar dari pengalaman yang didapat dari perangkat lain, layaknya manusia. IoT mencoba untuk memperluas interpendensi pada manusia, contohnya interaksi, kontribusi, dan kolaborasi pada sesuatu.

Pengembang aplikasi IoT akan mengirimkan sebuah aplikasi dengan dokumen yang berisi standar, logika, kesalahan, & pengecualian yang ditangani oleh pengembang itu sendiri kepada penguji. Sekali lagi, jika terdapat masalah pada aplikasi, penguji akan berkomunikasi kembali dengan pengembang aplikasi. Diperlukan beberapa iterasi & dengan cara seperti inilah suatu aplikasi pintar dapat dibuat.

Demikian pula, sensor suhu ruangan mengumpulkan data dan mengirimkannya melalui jaringan, yang kemudian digunakan oleh beberapa sensor perangkat untuk menyesuaikan suhu suatu ruangan. Misalnya, sensor pada lemari es dapat mengumpulkan data terkait suhu luar dan menyesuaikan suhu lemari es. Demikian pula, AC (Air Conditioner) juga dapat menyesuaikan suhunya. Hal ini adalah bagaimana suatu perangkat dapat berinteraksi, berkontribusi & berkolaborasi.

Manfaat dari IoT

Karena IoT memungkinkan perangkat dikontrol dari jarak jauh dengan internet, maka hal tersebut menciptakan peluang untuk langsung menghubungkan & mengintegrasikan dunia fisik ke sistem berbasis komputer menggunakan sensor dan internet. Interkoneksi beberapa perangkat tersemat (embedded deivices) ini akan menghasilkan otomatisasi di hampir semua bidang dan juga memungkinkan aplikasi tingkat lanjut. Hal ini menghasilkan peningkatan akurasi, efisiensi dan manfaat dalam segi ekonomi dengan intervensi / campur tangan manusia yang berkurang. Hal tersebut mencakup teknologi seperti jaringan cerdas, rumah pintar, transportasi cerdas dan kota pintar. Manfaat utama IoT adalah:

  • Improved Customer Engagement – IoT dapat meningkatkan pengalaman pengguna dengan mengotomatisasikan segala tindakan. Untuk contohnya, masalah apa pun di mobil akan terdeksi secara otomatis oleh sensor. Pengemudi, serta pabrikan, akan diberitahu tentang hal tersebut. Hingga pada waktu pengemudi akan mencapai masa servis dan akan melakukan servis, pabrikan akan dapat memastikan bahwa bagian yang kemungkinan rusak telah tersedia di bengkel.
  • Technical Optimization – IoT telah membantu banyak dalam meningkatkan kegunaan teknologi dan membuatnya menjadi lebih baik. Pabrikan dapat mendapatkan data dari sensor mobil yang berbeda dan menganalisanya untuk meningkatkan desain dan membuatnya menjadi lebih efisien.
  • Reduce Waste – Wawasan kita saat ini masih bisa terbilang dangkal, namun IoT menyediakan informasi rela-time yang mengarah ke pengambilan keputusan yang efektif dan pengolaan sumber daya. Sebbagai contohnya, jika pabrikan menemukan kesalahan pada banyak mesin, pabrikan tersebut dapat melacak pabrik pembuatan mesin tersebut dan dapat memperbaiki masalah dengan sabuk manufaktur.

Saat ini, kita telah dikelilingi oleh banyak perangkat yang diaktifkan oleh IoT yang terus memancarkan data dan berkomunikasi melalui beberapa perangkat. Selanjutnya, akan dibahas mengenai perangkat keras yang diperlukan untuk membangun IoT.

Perangkat Keras IoT

Hal pertama yang dibutuhkan untuk membangun perangkat IoT adalah sensor yang akan merasakan keadaan di lingkungan tertentu, selanjutnya dibutuhkan remote dashboard untuk memonitoring output dari sensor dan menampilkannya dalam antarmuka dengan bentuk yang lebih jelas dan mudah dipahami. Terakhir, akan dibutuhkan sebuah perangkat dengan kemampuan untuk serving dan routing. Tugas utama dari sistem adalah mendeteksi kondisi spesifik dan mengambil tindakan yang sesuai. Satu hal yang perlu diingat adalah mengamnkan komunikasi antara perangkat dan dashboard.

Beberapa sensor umum yang berada di lingkungan kita adalah accelerometer, sensor suhu, magnetometer, proximity sensor, gyroscope, image sensor, acoustic sensor, light sensor, pressure sensor, gas RFID sensor, humidity sensor dan micro-flow sensor.

Saat ini kita juga memiliki banyak perangkat yang dapat dikendalikan seperti smartwatches (jam tangan cerdas), sepatu dan kacamata 3D. Hal ttersebut adalah contoh terbaik dari smart solution (solusi cerdas). Kacamata 3D menyesuaikan kecerahan dan kontras televisi sesuai dengan mata kita dan jam tangan cerdasakan melacak aktivitas harian dan kebugaran tubuh pengguna.

Namun perangkat yang paling penting yang sangat berkontribusi pada IoT adalah telepon seluler / smartphone. Aplikasi seluler sangat berkontribusi dalam merevolusi dunia teknologi. Ponsel sudah terbungkus dengan aplikasi dan sensor yang memberikan banyak informasi tentang penggunanya. Aplikasi ponsel tersebut memiliki informasi Geo-lokasi, dapat merasakan dan melacak kondisi cahaya, orientasi perangkat dan lebih banyak informasi. Aplikasi tersebut juga dilengkapi dengan beberapa opsi konektivitas seperti Wi-Fi, Bluetooth, dan data seluler yang membantu suatu perangkat berkomunikasi dengan perangkat lainnya. Jadi, karena kualitas standar ponsel ini, yang merupakan inti dari ekosistem IoT. Hari ini, Smartphone dapat berinteraksi dengan smartwatch dan fitness band untuk lebih memudahkan dan meningkatkan pengalaman pengguna.

IoT menggunakan banyak teknologi dan protokol untuk berkomunikasi dengan perangkat berbasis pada kebutuhan. Mayoritas teknologi dan protokol adalah Bluetooth, wireless, NFC, RFID, radio protocols, dan WiFi-Direct.

Aplikasi IoT terus perkembang di dunia industri dan pemasaran. IoT memiliki banyak perluasan di berbagai bidang industri. Hal tersebut menjangkau semua kelompok dari pengguna, mulai dari yang mencoba untuk mereduksi dan mengkonversikan energi pada rumah mereka hingga organisasi besar yang ingin meningkatkan operasi bisnis mereka. IoT tidak hanya berguna dalam mengoptimalkan aplikasi penting di banyak organisasi, tapi juga telah mendorong konsep otomatisasi tingkat lanjut yang telah kita bayangkan sekitar satu dekade sebelumnya.

IoT dalam berbagai bidang/domain

Aplikasi Energi : Tingkat energi telah meningkat menjadi naluri yang hebat. Individu dan organisasi, keduanya mencari cara untuk mengurangi dan mengendalikan konsumsi energi. IoT menyediakan cara untuk tidak hanya memonitor penggunaan energi pada tingkat alat industri tetapi juga di tingkat rumah, tingkat jaringan atau bisa berada di tingkat distribusi. Smart Meter & Smart Grid digunakan untuk memonitor konsumsi energi. Ia juga mendeteksi ancaman terhadap kinerja dan stabilitas sistem, yang melindungi peralatan dari downtime dan kerusakan.

Aplikasi Kesehatan : Jam tangan cerdas dan perangkat fitness telah mengubah frekuensi pemantauan kesehatan. Seseorang dapat memantau kesehatan mereka sendiri secara berkala. Tidak hanya ini, sekarang jika seorang pasien datang ke rumah sakit dengan ambulans, pada saat dia mencapai rumah sakit, laporan kesehatannya didiagnosis oleh dokter dan rumah sakit segera memulai perawatan. Data yang dikumpulkan dari beberapa aplikasi perawatan kesehatan sekarang dikumpulkan dan digunakan untuk menganalisa berbagai penyakit dan menemukan metode yang tepat untuk menyembuhkannya.

Edukasi: IoT memberikan bantuan edukasi yang membantu dalam memenuhi kesenjangan dalam bidang pendidikan. Tidak hanya meningkatkan kualitas pendidikan tetapi juga mengoptimalkan biaya dan meningkatkan manajemen dengan mempertimbangkan respon dan kinerja siswa.

Kepemerintahan: Pemerintah berusaha membangun kota pintar (smart city) menggunakan solusi IoT. IoT meningkatkan sistem dan layanan angkatan bersenjata. IoT memberikan keamanan yang lebih baik di seluruh perbatasan melalui perangkat yang murah & berkinerja tinggi. IoT membantu instansi pemerintah untuk memonitor data secara real-time dan meningkatkan layanan mereka seperti perawatan kesehatan, transportasi, pendidikan, dll.

Polusi Udara dan Air: Melalui berbagai sensor, kita dapat mendeteksi polusi di udara dan air dengan sering sampling. Hal ini membantu dalam mencegah kontaminasi substansial dan bencana yang terkait. IoT memungkinkan operasi untuk meminimalkan intervensi manusia dalam analisis dan pemantauan sistem pertanian. Sistem secara otomatis mendeteksi perubahan pada tanaman, tanah, lingkungan, dan lainnya.

Transportasi: IoT telah mengubah sektor transportasi. Sekarang, dunia telah memiliki mobil self-driving dengan menggunakan beberapa sensor, lampu lalu lintas yang dapat memantau lalu lintas dan beralih secara otomatis, bantuan parkir, memberi kita lokasi tempat parkir gratis dll. Juga, berbagai sensor di kendaraan pribadi menunjukkan informasi tentang status kendaraan saat ini, sehingga pengemudi tidak menghadapi masalah apa pun saat mengemudi.

Pemasarkan Produk : Menggunakan IoT, suatu organisasi dapat menganalisis dan menanggapi preferensi pelanggan dengan lebih baik dengan mengirimkan konten dan solusi yang relevan. Hal ini membantu dalam meningkatkan strategi bisnis secara real-time.

Aplikasi IoT

Berikut merupakan beberapa contoh aplikasi dari IoT yang telah diterapkan pada kehidupan sehari-hari :

  • Nest Smart Thermostat : Salah teknologi Internet of things Indonesia yang sudah banyak dicicipi oleh masyarakat indonesia adalah Nest Smart Thermostat, termostat cerdas yang terhubung ke internet. Nest belajar rutinitas keluarga Anda dan secara otomatis akan menyesuaikan suhu berdasarkan ketika Anda di rumah atau jauh, hidup atau mati, panas atau dingin, untuk membuat rumah Anda lebih efisien dan membantu Anda menghemat tagihan. Aplikasi seluler memungkinkan Anda untuk mengedit jadwal, mengubah suhu ketika Anda jauh dari rumah, dan bahkan menerima peringatan ketika terlihat seperti sesuatu yang tidak beres dengan pemanasan atau sistem pendingin.
  • WeMo Switch Smart Plug : Salah satu perangkat yang paling berguna dalam kisaran Belkin untuk WEMO terhubung perangkat rumah di Switch, plug cerdas. Ini dihubungkan ke stopkontak biasa, menerima kabel daya dari perangkat apapun, dan dapat digunakan untuk menghidupkan dan mematikan pada jadwal yang ditetapkan atau ketika anda menekan tombol pada smartphone Anda. Model lain plug cerdas, saklar Insight, juga memantau berapa banyak energi perangkat Anda gunakan, membantu Anda membuat rumah Anda lebih hemat energi. Anda dapat melihat ketika colokan yang, seberapa banyak daya yang mereka gunakan, dan mengatur jadwal untuk operasi yang tepat dari aplikasi mobile.
  • Philips Hue Smart Bulbs : Sistem pencahayaan Philips Hue adalah yang paling populer dari lampu pintar yang saat ini tersedia. Pertama, warna-lampu Philips Hue dapat berubah warna sesuai yang Anda pilih; mereka bahkan akan cocok dengan nada dalam foto yang Anda upload melalui aplikasi. Mereka juga dapat dihidupkan dan dimatikan pada jadwal atau dari smartphone Anda, dan lampu Hue bahkan dapat disinkronkan dengan musik Anda untuk suara-dan-cahaya partai mengagumkan. perusahaan lain mulai melepaskan alat pintar juga, membuat ini lebih niche kompetitif; LIFX, Lumen, ilumi, dan Belkin semua memiliki versi mereka sendiri dari teknologi ini. Seperti kebanyakan perangkat rumah pintar IOT lainnya, ini dapat membantu Anda menyimpan uang pada energi serta memiliki banyak menyenangkan bermain-main dengan lampu Anda.
  • August Smart Lock : Dengan kunci pintar ini, Anda tidak perlu kunci lagi untuk membuka pintu ketika Anda tiba di rumah. Anda dapat memberikan kunci tamu untuk teman-teman atau siapapun yang Anda mau, dan anda bisa mencabut kunci tersebut ketika Anda tidak lagi ingin memberikan orang akses ke rumah Anda. Keypad opsional berarti Anda dapat mengatur kode untuk membuka pintu Anda jika Anda tidak sedang membawa ponsel . Anda bahkan dapat melihat log aktivitas dan memberikan akses dari smartphone Anda dari jarak jauh. sistem keamanan pintar menjadi lebih populer dengan meningkatnya pilihan, dan kunci pintar seperti ini adalah tempat yang bagus untuk memulai.
  • Canary Smart Security : Di masa lalu, detektor gerakan adalah tentang perangkat yang paling canggih yang dapat Anda gunakan untuk mengamankan rumah Anda terhadap penyusup-tapi monitor rumah saat ini jauh lebih maju. Sebagai contoh, Canary menggabungkan video, audio, deteksi gerak, night vision, sirene, dan kualitas udara, suhu, dan sensor kelembaban dalam satu perangkat yang dapat Anda kontrol dari ponsel Anda. Piper adalah sistem serupa yang berfungsi sebagai sistem keamanan dan perangkat monitoring rumah, dan juga dapat berfungsi sebagai pembicara, membiarkan Anda berbicara dengan siapa pun di rumah Anda bahkan jika Anda pergi. Sistem ini mendorong batas bagaimana mengendalikan Anda bisa, terlepas dari mana Anda berada dalam kaitannya dengan rumah Anda.

Source: otomasi sv ugm ac id | 2 June 2018 Maruf Shidiq

Internet of Things

From Wikipedia, the free encyclopedia

The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.

The definition of the Internet of things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation), and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the “smart home”, covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.

The IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.

History

The concept of a network of smart devices was discussed as early as 1982, with a modified Coke vending machine at Carnegie Mellon University becoming the first Internet-connected appliance, able to report its inventory and whether newly loaded drinks were cold or not. Mark Weiser’s 1991 paper on ubiquitous computing, “The Computer of the 21st Century”, as well as academic venues such as UbiComp and PerCom produced the contemporary vision of the IoT. In 1994, Reza Raji described the concept in IEEE Spectrum as “[moving] small packets of data to a large set of nodes, so as to integrate and automate everything from home appliances to entire factories”. Between 1993 and 1997, several companies proposed solutions like Microsoft’s at Work or Novell’s NEST. The field gained momentum when Bill Joy envisioned device-to-device communication as a part of his “Six Webs” framework, presented at the World Economic Forum at Davos in 1999.

The term “Internet of things” was likely coined by Kevin Ashton of Procter & Gamble, later MIT’s Auto-ID Center, in 1999, though he prefers the phrase “Internet for things”. At that point, he viewed Radio-frequency identification (RFID) as essential to the Internet of things, which would allow computers to manage all individual things.

A research article mentioning the Internet of Things was submitted to the conference for Nordic Researchers in Norway, in June 2002, which was preceded by an article published in Finnish in January 2002. The implementation described there was developed by Kary Främling and his team at Helsinki University of Technology and more closely matches the modern one, i.e. an information system infrastructure for implementing smart, connected objects.

Defining the Internet of things as “simply the point in time when more ‘things or objects’ were connected to the Internet than people”, Cisco Systems estimated that the IoT was “born” between 2008 and 2009, with the things/people ratio growing from 0.08 in 2003 to 1.84 in 2010.

Applications

The extensive set of applications for IoT devices is often divided into consumer, commercial, industrial, and infrastructure spaces.

Consumer Applications

A growing portion of IoT devices are created for consumer use, including connected vehicles, home automation, wearable technology (as part of Internet of Wearable Things (IoWT)), connected health, and appliances with remote monitoring capabilities.

Smart Home

IoT devices are a part of the larger concept of home automation, which can include lighting, heating and air conditioning, media and security systems. Long-term benefits could include energy savings by automatically ensuring lights and electronics are turned off.

A smart home or automated home could be based on a platform or hubs that control smart devices and appliances. For instance, using Apple’s HomeKit, manufacturers can have their home products and accessories controlled by an application in iOS devices such as the iPhone and the Apple Watch. This could be a dedicated app or iOS native applications such as Siri. This can be demonstrated in the case of Lenovo’s Smart Home Essentials, which is a line of smart home devices that are controlled through Apple’s Home app or Siri without the need for a Wi-Fi bridge. There are also dedicated smart home hubs that are offered as standalone platforms to connect different smart home products and these include the Amazon Echo, Google Home, Apple’s HomePod, and Samsung’s SmartThings Hub. In addition to the commercial systems, there are many non-proprietary, open source ecosystems; including Home Assistant, OpenHAB and Domoticz.

A Nest learning thermostat reporting on energy usage and local weather.
A Ring doorbell connected to the Internet
An August Home smart lock connected to the Internet

Elder Care

One key application of a smart home is to provide assistance for those with disabilities and elderly individuals. These home systems use assistive technology to accommodate an owner’s specific disabilities. Voice control can assist users with sight and mobility limitations while alert systems can be connected directly to cochlear implants worn by hearing-impaired users. They can also be equipped with additional safety features. These features can include sensors that monitor for medical emergencies such as falls or seizures. Smart home technology applied in this way can provide users with more freedom and a higher quality of life.

The term “Enterprise IoT” refers to devices used in business and corporate settings. By 2019, it is estimated that the EIoT will account for 9.1 billion devices.

Commercial Application

Medical and Healthcare

The Internet of Medical Things (also called the internet of health things) is an application of the IoT for medical and health related purposes, data collection and analysis for research, and monitoring. This ‘Smart Healthcare’, as it is also called, led to the creation of a digitized healthcare system, connecting available medical resources and healthcare services.

IoT devices can be used to enable remote health monitoring and emergency notification systems. These health monitoring devices can range from blood pressure and heart rate monitors to advanced devices capable of monitoring specialized implants, such as pacemakers, Fitbit electronic wristbands, or advanced hearing aids. Some hospitals have begun implementing “smart beds” that can detect when they are occupied and when a patient is attempting to get up. It can also adjust itself to ensure appropriate pressure and support is applied to the patient without the manual interaction of nurses. A 2015 Goldman Sachs report indicated that healthcare IoT devices “can save the United States more than $300 billion in annual healthcare expenditures by increasing revenue and decreasing cost.” Moreover, the use of mobile devices to support medical follow-up led to the creation of ‘m-health’, used “to analyze, capture, transmit and store health statistics from multiple resources, including sensors and other biomedical acquisition systems”.

Specialized sensors can also be equipped within living spaces to monitor the health and general well-being of senior citizens, while also ensuring that proper treatment is being administered and assisting people regain lost mobility via therapy as well. These sensors create a network of intelligent sensors that are able to collect, process, transfer, and analyse valuable information in different environments, such as connecting in-home monitoring devices to hospital-based systems. Other consumer devices to encourage healthy living, such as connected scales or wearable heart monitors, are also a possibility with the IoT. End-to-end health monitoring IoT platforms are also available for antenatal and chronic patients, helping one manage health vitals and recurring medication requirements.

Advances in plastic and fabric electronics fabrication methods have enabled ultra-low cost, use-and-throw IoMT sensors. These sensors, along with the required RFID electronics, can be fabricated on paper or e-textiles for wirelessly powered disposable sensing devices.Applications have been established for point-of-care medical diagnostics, where portability and low system-complexity is essential.

As of 2018 IoMT was not only being applied in the clinical laboratory industry, but also in the healthcare and health insurance industries. IoMT in the healthcare industry is now permitting doctors, patients, and others involved (i.e. guardians of patients, nurses, families, etc.) to be part of a system, where patient records are saved in a database, allowing doctors and the rest of the medical staff to have access to the patient’s information. Moreover, IoT-based systems are patient-centered, which involves being flexible to the patient’s medical conditions. IoMT in the insurance industry provides access to better and new types of dynamic information. This includes sensor-based solutions such as biosensors, wearables, connected health devices, and mobile apps to track customer behaviour. This can lead to more accurate underwriting and new pricing models.

The application of the IOT in healthcare plays a fundamental role in managing chronic diseases and in disease prevention and control. Remote monitoring is made possible through the connection of powerful wireless solutions. The connectivity enables health practitioners to capture patient’s data and applying complex algorithms in health data analysis.

Transportation

The IoT can assist in the integration of communications, control, and information processing across various transportation systems. Application of the IoT extends to all aspects of transportation systems (i.e. the vehicle, the infrastructure, and the driver or user). Dynamic interaction between these components of a transport system enables inter- and intra-vehicular communication, smart traffic control, smart parking, electronic toll collection systems, logistics and fleet management, vehicle control, safety, and road assistance. In Logistics and Fleet Management, for example, an IoT platform can continuously monitor the location and conditions of cargo and assets via wireless sensors and send specific alerts when management exceptions occur (delays, damages, thefts, etc.). This can only be possible with the IoT and its seamless connectivity among devices. Sensors such as GPS, Humidity, and Temperature send data to the IoT platform and then the data is analyzed and then sent to the users. This way, users can track the real-time status of vehicles and can make appropriate decisions. If combined with Machine Learning, then it also helps in reducing traffic accidents by introducing drowsiness alerts to drivers and providing self-driven cars too.

Digital variable speed-limit sign.

V2X Communications

In vehicular communication systems, vehicle-to-everything communication (V2X), consists of three main components: vehicle to vehicle communication (V2V), vehicle to infrastructure communication (V2I) and vehicle to pedestrian communications (V2P). V2X is the first step to autonomous driving and connected road infrastructure.

Building and Home Automation

IoT devices can be used to monitor and control the mechanical, electrical and electronic systems used in various types of buildings (e.g., public and private, industrial, institutions, or residential) in home automation and building automation systems. In this context, three main areas are being covered in literature:

  • The integration of the Internet with building energy management systems in order to create energy efficient and IOT-driven “smart buildings”.
  • The possible means of real-time monitoring for reducing energy consumption[61] and monitoring occupant behaviors.
  • The integration of smart devices in the built environment and how they might to know how to be used in future applications.

Industrial Applications

Manufacturing

The IoT can realize the seamless integration of various manufacturing devices equipped with sensing, identification, processing, communication, actuation, and networking capabilities. Based on such a highly integrated smart cyberphysical space, it opens the door to create whole new business and market opportunities for manufacturing. Network control and management of manufacturing equipment, asset and situation management, or manufacturing process control bring the IoT within the realm of industrial applications and smart manufacturing as well. The IoT intelligent systems enable rapid manufacturing of new products, dynamic response to product demands, and real-time optimization of manufacturing production and supply chain networks, by networking machinery, sensors and control systems together.

Digital control systems to automate process controls, operator tools and service information systems to optimize plant safety and security are within the purview of the IoT. But it also extends itself to asset management via predictive maintenance, statistical evaluation, and measurements to maximize reliability. Industrial management systems can also be integrated with smart grids, enabling real-time energy optimization. Measurements, automated controls, plant optimization, health and safety management, and other functions are provided by a large number of networked sensors.

Industrial IoT (IIoT) in manufacturing could generate so much business value that it will eventually lead to the Fourth Industrial Revolution, also referred to as Industry 4.0. The potential for growth from implementing IIoT may generate $12 trillion of global GDP by 2030.

Design architecture of cyber-physical systems-enabled manufacturing system

Industrial big data analytics will play a vital role in manufacturing asset predictive maintenance, although that is not the only capability of industrial big data. Cyber-physical systems (CPS) is the core technology of industrial big data and it will be an interface between human and the cyber world. Cyber-physical systems can be designed by following the 5C (connection, conversion, cyber, cognition, configuration) architecture, and it will transform the collected data into actionable information, and eventually interfere with the physical assets to optimize processes.

An IoT-enabled intelligent system of such cases was proposed in 2001 and later demonstrated in 2014 by the National Science Foundation Industry/University Collaborative Research Center for Intelligent Maintenance Systems (IMS) at the University of Cincinnati on a bandsaw machine in IMTS 2014 in Chicago. Bandsaw machines are not necessarily expensive, but the bandsaw belt expenses are enormous since they degrade much faster. However, without sensing and intelligent analytics, it can be only determined by experience when the band saw belt will actually break. The developed prognostics system will be able to recognize and monitor the degradation of band saw belts even if the condition is changing, advising users when is the best time to replace the belt. This will significantly improve user experience and operator safety and ultimately save on costs.

Agriculture

There are numerous IoT applications in farming such as collecting data on temperature, rainfall, humidity, wind speed, pest infestation, and soil content. This data can be used to automate farming techniques, take informed decisions to improve quality and quantity, minimize risk and waste, and reduce effort required to manage crops. For example, farmers can now monitor soil temperature and moisture from afar, and even apply IoT-acquired data to precision fertilization programs.

In August 2018, Toyota Tsusho began a partnership with Microsoft to create fish farming tools using the Microsoft Azure application suite for IoT technologies related to water management. Developed in part by researchers from Kindai University, the water pump mechanisms use artificial intelligence to count the number of fish on a conveyor belt, analyze the number of fish, and deduce the effectiveness of water flow from the data the fish provide. The specific computer programs used in the process fall under the Azure Machine Learning and the Azure IoT Hub platforms.

Infrastructure Applications

Monitoring and controlling operations of sustainable urban and rural infrastructures like bridges, railway tracks and on- and offshore wind-farms is a key application of the IoT. The IoT infrastructure can be used for monitoring any events or changes in structural conditions that can compromise safety and increase risk. The IoT can benefit the construction industry by cost saving, time reduction, better quality workday, paperless workflow and increase in productivity. It can help in taking faster decisions and save money with Real-Time Data Analytics. It can also be used for scheduling repair and maintenance activities in an efficient manner, by coordinating tasks between different service providers and users of these facilities. IoT devices can also be used to control critical infrastructure like bridges to provide access to ships. Usage of IoT devices for monitoring and operating infrastructure is likely to improve incident management and emergency response coordination, and quality of service, up-times and reduce costs of operation in all infrastructure related areas. Even areas such as waste management can benefit from automation and optimization that could be brought in by the IoT.

Metropolitan Scale Deployments

There are several planned or ongoing large-scale deployments of the IoT, to enable better management of cities and systems. For example, Songdo, South Korea, the first of its kind fully equipped and wired smart city, is gradually being built, with approximately 70 percent of the business district completed as of June 2018. Much of the city is planned to be wired and automated, with little or no human intervention.

Another application is a currently undergoing project in Santander, Spain. For this deployment, two approaches have been adopted. This city of 180,000 inhabitants has already seen 18,000 downloads of its city smartphone app. The app is connected to 10,000 sensors that enable services like parking search, environmental monitoring, digital city agenda, and more. City context information is used in this deployment so as to benefit merchants through a spark deals mechanism based on city behavior that aims at maximizing the impact of each notification.

Other examples of large-scale deployments underway include the Sino-Singapore Guangzhou Knowledge City; work on improving air and water quality, reducing noise pollution, and increasing transportation efficiency in San Jose, California; and smart traffic management in western Singapore. Using its RPMA (Random Phase Multiple Access) technology, San Diego-based Ingenu has built a nationwide public network for low-bandwidth data transmissions using the same unlicensed 2.4 gigahertz spectrum as Wi-Fi. Ingenu’s “Machine Network” covers more than a third of the US population across 35 major cities including San Diego and Dallas. French company, Sigfox, commenced building an Ultra Narrowband wireless data network in the San Francisco Bay Area in 2014, the first business to achieve such a deployment in the U.S. It subsequently announced it would set up a total of 4000 base stations to cover a total of 30 cities in the U.S. by the end of 2016, making it the largest IoT network coverage provider in the country thus far. Cisco also participates in smart cities projects. Cisco has started deploying technologies for Smart Wi-Fi, Smart Safety & Security, Smart Lighting, Smart Parking, Smart Transports, Smart Bus Stops, Smart Kiosks, Remote Expert for Government Services (REGS) and Smart Education in the five km area in the city of Vijaywada.

Another example of a large deployment is the one completed by New York Waterways in New York City to connect all the city’s vessels and be able to monitor them live 24/7. The network was designed and engineered by Fluidmesh Networks, a Chicago-based company developing wireless networks for critical applications. The NYWW network is currently providing coverage on the Hudson River, East River, and Upper New York Bay. With the wireless network in place, NY Waterway is able to take control of its fleet and passengers in a way that was not previously possible. New applications can include security, energy and fleet management, digital signage, public Wi-Fi, paperless ticketing and others.

Energy Management

Significant numbers of energy-consuming devices (e.g. switches, power outlets, bulbs, televisions, etc.) already integrate Internet connectivity, which can allow them to communicate with utilities to balance power generation and energy usage and optimize energy consumption as a whole. These devices allow for remote control by users, or central management via a cloud-based interface, and enable functions like scheduling (e.g., remotely powering on or off heating systems, controlling ovens, changing lighting conditions etc.). The smart grid is a utility-side IoT application; systems gather and act on energy and power-related information to improve the efficiency of the production and distribution of electricity. Using advanced metering infrastructure (AMI) Internet-connected devices, electric utilities not only collect data from end-users, but also manage distribution automation devices like transformers.

Environmental Monitoring

Environmental monitoring applications of the IoT typically use sensors to assist in environmental protection by monitoring air or water quality, atmospheric or soil conditions, and can even include areas like monitoring the movements of wildlife and their habitats. Development of resource-constrained devices connected to the Internet also means that other applications like earthquake or tsunami early-warning systems can also be used by emergency services to provide more effective aid. IoT devices in this application typically span a large geographic area and can also be mobile. It has been argued that the standardization IoT brings to wireless sensing will revolutionize this area.

Living Lab

Another example of integrating the IoT is Living Lab which integrates and combines research and innovation process, establishing within a public-private-people-partnership. There are currently 320 Living Labs that use the IoT to collaborate and share knowledge between stakeholders to co-create innovative and technological products. For companies to implement and develop IoT services for smart cities, they need to have incentives. The governments play key roles in smart cities projects as changes in policies will help cities to implement the IoT which provides effectiveness, efficiency, and accuracy of the resources that are being used. For instance, the government provides tax incentives and cheap rent, improves public transports, and offers an environment where start-up companies, creative industries, and multinationals may co-create, share common infrastructure and labor markets, and take advantages of locally embedded technologies, production process, and transaction costs. The relationship between the technology developers and governments who manage city’s assets, is key to provide open access of resources to users in an efficient way.

Trends and Characteristics

The IoT’s major significant trend in recent years is the explosive growth of devices connected and controlled by the Internet. The wide range of applications for IoT technology mean that the specifics can be very different from one device to the next but there are basic characteristics shared by most.

The IoT creates opportunities for more direct integration of the physical world into computer-based systems, resulting in efficiency improvements, economic benefits, and reduced human exertions.

The number of IoT devices increased 31% year-over-year to 8.4 billion in the year 2017 and it is estimated that there will be 30 billion devices by 2020. The global market value of IoT is projected to reach $7.1 trillion by 2020.

Technology roadmap: Internet of things.

Intelligence

Ambient intelligence and autonomous control are not part of the original concept of the Internet of things. Ambient intelligence and autonomous control do not necessarily require Internet structures, either. However, there is a shift in research (by companies such as Intel) to integrate the concepts of the IoT and autonomous control, with initial outcomes towards this direction considering objects as the driving force for autonomous IoT. A promising approach in this context is deep reinforcement learning where most of IoT systems provide a dynamic and interactive environment. Training an agent (i.e., IoT device) to behave smartly in such an environment cannot be addressed by conventional machine learning algorithms such as supervised learning. By reinforcement learning approach, a learning agent can sense the environment’s state (e.g., sensing home temperature), perform actions (e.g., turn HVAC on or off) and learn through the maximizing accumulated rewards it receives in long term.

IoT intelligence can be offered at three levels: IoT devices, Edge/Fog nodes, and Cloud computing. The need for intelligent control and decision at each level depends on the time sensitiveness of the IoT application. For example, an autonomous vehicle’s camera needs to make real-time obstacle detection to avoid an accident. This fast decision making would not be possible through transferring data from the vehicle to cloud instances and return the predictions back to the vehicle. Instead, all the operation should be performed locally in the vehicle. Integrating advanced machine learning algorithms including deep learning into IoT devices is an active research area to make smart objects closer to reality. Moreover, it is possible to get the most value out of IoT deployments through analyzing IoT data, extracting hidden information, and predicting control decisions. A wide variety of machine learning techniques have been used in IoT domain ranging from traditional methods such as regression, support vector machine, and random forest to advanced ones such as convolutional neural networks, LSTM, and variational autoencoder.

In the future, the Internet of Things may be a non-deterministic and open network in which auto-organized or intelligent entities (web services, SOA components) and virtual objects (avatars) will be interoperable and able to act independently (pursuing their own objectives or shared ones) depending on the context, circumstances or environments. Autonomous behavior through the collection and reasoning of context information as well as the object’s ability to detect changes in the environment (faults affecting sensors) and introduce suitable mitigation measures constitutes a major research trend, clearly needed to provide credibility to the IoT technology. Modern IoT products and solutions in the marketplace use a variety of different technologies to support such context-aware automation, but more sophisticated forms of intelligence are requested to permit sensor units and intelligent cyber-physical systems to be deployed in real environments.

Architecture

IoT system architecture, in its simplistic view, consists of three tiers:

  • Tier 1: Devices
  • Tier 2: the Edge Gateway
  • Tier 3: the Cloud

Devices include networked things, such as the sensors and actuators found in IIoT equipment, particularly those that use protocols such as Modbus, Zigbee, or proprietary protocols, to connect to an Edge Gateway. The Edge Gateway consists of sensor data aggregation systems called Edge Gateways that provide functionality, such as pre-processing of the data, securing connectivity to cloud, using systems such as WebSockets, the event hub, and, even in some cases, edge analytics or fog computing. The final tier includes the cloud application built for IIoT using the microservices architecture, which are usually polyglot and inherently secure in nature using HTTPS/OAuth. It includes various database systems that store sensor data, such as time series databases or asset stores using backend data storage systems (e.g. Cassandra, Postgres). The cloud tier in most cloud-based IoT system features event queuing and messaging system that handles communication that transpires in all tiers. Some experts classified the three-tiers in the IIoT system as edge, platform, and enterprise and these are connected by proximity network, access network, and service network, respectively.

Building on the Internet of things, the web of things is an architecture for the application layer of the Internet of things looking at the convergence of data from IoT devices into Web applications to create innovative use-cases. In order to program and control the flow of information in the Internet of things, a predicted architectural direction is being called BPM Everywhere which is a blending of traditional process management with process mining and special capabilities to automate the control of large numbers of coordinated devices.

Network Architecture

The Internet of things requires huge scalability in the network space to handle the surge of devices. IETF 6LoWPAN would be used to connect devices to IP networks. With billions of devices being added to the Internet space, IPv6 will play a major role in handling the network layer scalability. IETF’s Constrained Application Protocol, ZeroMQ, and MQTT would provide lightweight data transport.

Fog computing is a viable alternative to prevent such large burst of data flow through Internet. The edge devices’ computation power to analyse and process data is extremely limited. Limited processing power is a key attribute of IoT devices as their purpose is to supply data about physical objects while remaining autonomous. Heavy processing requirements use more battery power harming IoT’s ability to operate. Scalability is easy because IoT devices simply supply data through the internet to a server with sufficient processing power.

Complexity

In semi-open or closed loops (i.e. value chains, whenever a global finality can be settled) the IoT will often be considered and studied as a complex system due to the huge number of different links, interactions between autonomous actors, and its capacity to integrate new actors. At the overall stage (full open loop) it will likely be seen as a chaotic environment (since systems always have finality). As a practical approach, not all elements in the Internet of things run in a global, public space. Subsystems are often implemented to mitigate the risks of privacy, control and reliability. For example, domestic robotics (domotics) running inside a smart home might only share data within and be available via a local network. Managing and controlling a high dynamic ad hoc IoT things/devices network is a tough task with the traditional networks architecture, Software Defined Networking (SDN) provides the agile dynamic solution that can cope with the special requirements of the diversity of innovative IoT applications.

Size Considerations

The Internet of things would encode 50 to 100 trillion objects, and be able to follow the movement of those objects. Human beings in surveyed urban environments are each surrounded by 1000 to 5000 trackable objects. In 2015 there were already 83 million smart devices in people’s homes. This number is expected to grow to 193 million devices by 2020.

The figure of online capable devices grew 31% from 2016 to 8.4 billion in 2017.

Space Considerations

In the Internet of things, the precise geographic location of a thing—and also the precise geographic dimensions of a thing—will be critical. Therefore, facts about a thing, such as its location in time and space, have been less critical to track because the person processing the information can decide whether or not that information was important to the action being taken, and if so, add the missing information (or decide to not take the action). (Note that some things in the Internet of things will be sensors, and sensor location is usually important.) The GeoWeb and Digital Earth are promising applications that become possible when things can become organized and connected by location. However, the challenges that remain include the constraints of variable spatial scales, the need to handle massive amounts of data, and an indexing for fast search and neighbor operations. In the Internet of things, if things are able to take actions on their own initiative, this human-centric mediation role is eliminated. Thus, the time-space context that we as humans take for granted must be given a central role in this information ecosystem. Just as standards play a key role in the Internet and the Web, geospatial standards will play a key role in the Internet of things.

A Solution to “Basket of Remotes”

Many IoT devices have a potential to take a piece of this market. Jean-Louis Gassée (Apple initial alumni team, and BeOS co-founder) has addressed this topic in an article on Monday Note, where he predicts that the most likely problem will be what he calls the “basket of remotes” problem, where we’ll have hundreds of applications to interface with hundreds of devices that don’t share protocols for speaking with one another. For improved user interaction, some technology leaders are joining forces to create standards for communication between devices to solve this problem. Others are turning to the concept of predictive interaction of devices, “where collected data is used to predict and trigger actions on the specific devices” while making them work together.

Enabling Technologies for IoT

There are many technologies that enable the IoT. Crucial to the field is the network used to communicate between devices of an IoT installation, a role that several wireless or wired technologies may fulfill:

Addressability

The original idea of the Auto-ID Center is based on RFID-tags and distinct identification through the Electronic Product Code. This has evolved into objects having an IP address or URI. An alternative view, from the world of the Semantic Web focuses instead on making all things (not just those electronic, smart, or RFID-enabled) addressable by the existing naming protocols, such as URI. The objects themselves do not converse, but they may now be referred to by other agents, such as powerful centralized servers acting for their human owners. Integration with the Internet implies that devices will use an IP address as a distinct identifier. Due to the limited address space of IPv4 (which allows for 4.3 billion different addresses), objects in the IoT will have to use the next generation of the Internet protocol (IPv6) to scale to the extremely large address space required. Internet-of-things devices additionally will benefit from the stateless address auto-configuration present in IPv6, as it reduces the configuration overhead on the hosts, and the IETF 6LoWPAN header compression. To a large extent, the future of the Internet of things will not be possible without the support of IPv6; and consequently, the global adoption of IPv6 in the coming years will be critical for the successful development of the IoT in the future.

Short-range Wireless

  • Bluetooth mesh networking – Specification providing a mesh networking variant to Bluetooth low energy (BLE) with increased number of nodes and standardized application layer (Models).
  • Light-Fidelity (Li-Fi) – Wireless communication technology similar to the Wi-Fi standard, but using visible light communication for increased bandwidth.
  • Near-field communication (NFC) – Communication protocols enabling two electronic devices to communicate within a 4 cm range.
  • Radio-frequency identification (RFID) – Technology using electromagnetic fields to read data stored in tags embedded in other items.
  • Wi-Fi – technology for local area networking based on the IEEE 802.11 standard, where devices may communicate through a shared access point or directly between individual devices.
  • ZigBee – Communication protocols for personal area networking based on the IEEE 802.15.4 standard, providing low power consumption, low data rate, low cost, and high throughput.
  • Z-Wave – Wireless communications protocol used primarily for home automation and security applications

Medium-range Wireless

LTE-Advanced – High-speed communication specification for mobile networks. Provides enhancements to the LTE standard with extended coverage, higher throughput, and lower latency.

Long-range Wireless

  • Low-power wide-area networking (LPWAN) – Wireless networks designed to allow long-range communication at a low data rate, reducing power and cost for transmission. Available LPWAN technologies and protocols: LoRaWan, Sigfox, NB-IoT, Weightless, RPMA.
  • Very small aperture terminal (VSAT) – Satellite communication technology using small dish antennas for narrowband and broadband data.

Wired

  • Ethernet – General purpose networking standard using twisted pair and fiber optic links in conjunction with hubs or switches.
  • Power-line communication (PLC) – Communication technology using electrical wiring to carry power and data. Specifications such as HomePlug or G.hn utilize PLC for networking IoT devices

Standards and Standards organizations

This is a list of technical standards for the IoT, most of which are open standards, and the standards organizations that aspire to successfully setting them.

Politics and Civic Engagement

Some scholars and activists argue that the IoT can be used to create new models of civic engagement if device networks can be open to user control and inter-operable platforms. Philip N. Howard, a professor and author, writes that political life in both democracies and authoritarian regimes will be shaped by the way the IoT will be used for civic engagement. For that to happen, he argues that any connected device should be able to divulge a list of the “ultimate beneficiaries” of its sensor data and that individual citizens should be able to add new organizations to the beneficiary list. In addition, he argues that civil society groups need to start developing their IoT strategy for making use of data and engaging with the public.

Government Regulation on IoT

One of the key drivers of the IoT is data. The success of the idea of connecting devices to make them more efficient is dependent upon access to and storage & processing of data. For this purpose, companies working on the IoT collect data from multiple sources and store it in their cloud network for further processing. This leaves the door wide open for privacy and security dangers and single point vulnerability of multiple systems. The other issues pertain to consumer choice and ownership of data and how it is used. Though still in their infancy, regulations and governance regarding these issues of privacy, security, and data ownership continue to develop. IoT regulation depends on the country. Some examples of legislation that is relevant to privacy and data collection are: the US Privacy Act of 1974, OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data of 1980, and the EU Directive 95/46/EC of 1995.

Current Regulatory Environment:

A report published by the Federal Trade Commission (FTC) in January 2015 made the following three recommendations:

  • Data security – At the time of designing IoT companies should ensure that data collection, storage and processing would be secure at all times. Companies should adopt a “defence in depth” approach and encrypt data at each stage.[149]
  • Data consent – users should have a choice as to what data they share with IoT companies and the users must be informed if their data gets exposed.
  • Data minimization – IoT companies should collect only the data they need and retain the collected information only for a limited time.

However, the FTC stopped at just making recommendations for now. According to an FTC analysis, the existing framework, consisting of the FTC Act, the Fair Credit Reporting Act, and the Children’s Online Privacy Protection Act, along with developing consumer education and business guidance, participation in multi-stakeholder efforts and advocacy to other agencies at the federal, state and local level, is sufficient to protect consumer rights.[150]

A resolution passed by the Senate in March 2015, is already being considered by the Congress. This resolution recognized the need for formulating a National Policy on IoT and the matter of privacy, security and spectrum. Furthermore, to provide an impetus to the IoT ecosystem, in March 2016, a bipartisan group of four Senators proposed a bill, The Developing Innovation and Growing the Internet of Things (DIGIT) Act, to direct the Federal Communications Commission to assess the need for more spectrum to connect IoT devices.

Several standards for the IoT industry are actually being established relating to automobiles because most concerns arising from use of connected cars apply to healthcare devices as well. In fact, the National Highway Traffic Safety Administration (NHTSA) is preparing cybersecurity guidelines and a database of best practices to make automotive computer systems more secure.

A recent report from the World Bank examines the challenges and opportunities in government adoption of IoT. These include –

  • Still early days for the IoT in government
  • Underdeveloped policy and regulatory frameworks
  • Unclear business models, despite strong value proposition
  • Clear institutional and capacity gap in government AND the private sector
  • Inconsistent data valuation and management
  • Infrastructure a major barrier
  • Government as an enabler
  • Most successful pilots share common characteristics (public-private partnership, local, leadership)

Criticism and Controversies

Platform Fragmentation

The IoT suffers from platform fragmentation and lack of technical standards a situation where the variety of IoT devices, in terms of both hardware variations and differences in the software running on them, makes the task of developing applications that work consistently between different inconsistent technology ecosystems hard. For example, wireless connectivity for IoT devices can be done using Bluetooth, Zigbee, Z-Wave, LoRa, NB-IoT, Cat M1 as well as completely custom proprietary radios, each with its own advantages and disadvantages, creating a separate ecosystem for IoT devices. Customers may be hesitant to bet their IoT future on a proprietary software or hardware devices that uses proprietary protocols that may fade or become difficult to customize and interconnect.

The IoT’s amorphous computing nature is also a problem for security, since patches to bugs found in the core operating system often do not reach users of older and lower-price devices. One set of researchers say that the failure of vendors to support older devices with patches and updates leaves more than 87% of active Android devices vulnerable.

Privacy, Autonomy, and Control

Philip N. Howard, a professor and author, writes that the Internet of things offers immense potential for empowering citizens, making government transparent, and broadening information access. Howard cautions, however, that privacy threats are enormous, as is the potential for social control and political manipulation.

Concerns about privacy have led many to consider the possibility that big data infrastructures such as the Internet of things and data mining are inherently incompatible with privacy.[168] Writer Adam Greenfield claims that these technologies are not only an invasion of public space but are also being used to perpetuate normative behavior, citing an instance of billboards with hidden cameras that tracked the demographics of passersby who stopped to read the advertisement.

The Internet of Things Council compared the increased prevalence of digital surveillance due to the Internet of things to the conceptual panopticon described by Jeremy Bentham in the 18th Century. The assertion was defended by the works of French philosophers Michel Foucault and Gilles Deleuze. In Discipline and Punish: The Birth of the Prison Foucault asserts that the panopticon was a central element of the discipline society developed during the Industrial Era. Foucault also argued that the discipline systems established in factories and school reflected Bentham’s vision of panopticism. In his 1992 paper “Postscripts on the Societies of Control,” Deleuze wrote that the discipline society had transitioned into a control society, with the computer replacing the panopticon as an instrument of discipline and control while still maintaining the qualities similar to that of panopticism.

The privacy of households could be compromised by solely analyzing smart home network traffic patterns without dissecting the contents of encrypted application data, yet a synthetic packet injection scheme can be used to safely overcome such invasion of privacy.

Peter-Paul Verbeek, a professor of philosophy of technology at the University of Twente, Netherlands, writes that technology already influences our moral decision making, which in turn affects human agency, privacy and autonomy. He cautions against viewing technology merely as a human tool and advocates instead to consider it as an active agent.

Justin Brookman, of the Center for Democracy and Technology, expressed concern regarding the impact of the IoT on consumer privacy, saying that “There are some people in the commercial space who say, ‘Oh, big data — well, let’s collect everything, keep it around forever, we’ll pay for somebody to think about security later.’ The question is whether we want to have some sort of policy framework in place to limit that.”

Tim O’Reilly believes that the way companies sell the IoT devices on consumers are misplaced, disputing the notion that the IoT is about gaining efficiency from putting all kinds of devices online and postulating that the “IoT is really about human augmentation. The applications are profoundly different when you have sensors and data driving the decision-making.”

Editorials at WIRED have also expressed concern, one stating “What you’re about to lose is your privacy. Actually, it’s worse than that. You aren’t just going to lose your privacy, you’re going to have to watch the very concept of privacy be rewritten under your nose.”

The American Civil Liberties Union (ACLU) expressed concern regarding the ability of IoT to erode people’s control over their own lives. The ACLU wrote that “There’s simply no way to forecast how these immense powers – disproportionately accumulating in the hands of corporations seeking financial advantage and governments craving ever more control – will be used. Chances are big data and the Internet of things will make it harder for us to control our own lives, as we grow increasingly transparent to powerful corporations and government institutions that are becoming more opaque to us.”

In response to rising concerns about privacy and smart technology, in 2007 the British Government stated it would follow formal Privacy by Design principles when implementing their smart metering program. The program would lead to replacement of traditional power meters with smart power meters, which could track and manage energy usage more accurately. However the British Computer Society is doubtful these principles were ever actually implemented. In 2009 the Dutch Parliament rejected a similar smart metering program, basing their decision on privacy concerns. The Dutch program later revised and passed in 2011.

Data Storage

A challenge for producers of IoT applications is to clean, process and interpret the vast amount of data which is gathered by the sensors. There is a solution proposed for the analytics of the information referred to as Wireless Sensor Networks. These networks share data among sensor nodes that are sent to a distributed system for the analytics of the sensory data.

Another challenge is the storage of this bulk data. Depending on the application, there could be high data acquisition requirements, which in turn lead to high storage requirements. Currently the Internet is already responsible for 5% of the total energy generated,[181] and a “daunting challenge to power” IoT devices to collect and even store data still remains.

Security

Concerns have been raised that the IoT is being developed rapidly without appropriate consideration of the profound security challenges involved and the regulatory changes that might be necessary. Most of the technical security concerns are similar to those of conventional servers, workstations and smartphones, but security challenges unique to the IoT continue to develop, including industrial security controls, hybrid systems, IoT-specific business processes, and end nodes.

Security is the biggest concern in adopting Internet of things technology. In particular, as the Internet of things spreads widely, cyber attacks are likely to become an increasingly physical (rather than simply virtual) threat. The current IoT space comes with numerous security vulnerabilities. These vulnerabilities include weak authentication (IoT devices are being used with default credentials), unencrypted messages sent between devices, SQL injections and lack of verification or encryption of software updates. This allows attackers to easily intercept data to collect PII (Personally Identifiable Information), steal user credentials at login, or inject malware into newly updated firmware.

In a January 2014 article in Forbes, cyber-security columnist Joseph Steinberg listed many Internet-connected appliances that can already “spy on people in their own homes” including televisions, kitchen appliances, cameras, and thermostats. Computer-controlled devices in automobiles such as brakes, engine, locks, hood and trunk releases, horn, heat, and dashboard have been shown to be vulnerable to attackers who have access to the on-board network. In some cases, vehicle computer systems are Internet-connected, allowing them to be exploited remotely. For example, a hacker can gain unauthorized access to IoT devices due to their set-up; that is, because these devices are connected, Internet-enabled, and lack the necessary protective measures. By 2008 security researchers had shown the ability to remotely control pacemakers without authority. Later hackers demonstrated remote control of insulin pumps and implantable cardioverter defibrillators. Many of these IoT devices have severe operational limitations on their physical size and by extension the computational power available to them. These constraints often make them unable to directly use basic security measures such as implementing firewalls or using strong cryptosystems to encrypt their communications with other devices.

The U.S. National Intelligence Council in an unclassified report maintains that it would be hard to deny “access to networks of sensors and remotely-controlled objects by enemies of the United States, criminals, and mischief makers… An open market for aggregated sensor data could serve the interests of commerce and security no less than it helps criminals and spies identify vulnerable targets. Thus, massively parallel sensor fusion may undermine social cohesion, if it proves to be fundamentally incompatible with Fourth-Amendment guarantees against unreasonable search.” In general, the intelligence community views the Internet of things as a rich source of data.

In 2016, a distributed denial of service attack powered by Internet of things devices running the Mirai malware took down a DNS provider and major web sites.[200] The Mirai Botnet had infected roughly 65,000 IoT devices within the first 20 hours.Eventually the infections increased to 200,000 to 300,000 infections. Brazil, Columbia and Vietnam made up of 41.5% of the infections. The Mirai Botnet had singled out specific IoT devices that consisted of DVRs, IP cameras, routers and printers. Top vendors that contained the most infected devices were identified as Dahua, Huawei, ZTE, Cisco, ZyXEL and MikroTik. In May 2017, Junade Ali, a Computer Scientist at Cloudflare noted that native DDoS vulnerabilities exist in IoT devices due to a poor implementation of the Publish–subscribe pattern. These sorts of attacks have caused security experts to view IoT as a real threat to Internet services.

On 31 January 2019, the Washington Post wrote an article regarding the security and ethical challenges that can occur with IoT doorbells and cameras: “Last month, Ring got caught allowing its team in Ukraine to view and annotate certain user videos; the company says it only looks at publicly shared videos and those from Ring owners who provide consent. Just last week, a California family’s Nest camera let a hacker take over and broadcast fake audio warnings about a missile attack, not to mention peer in on them, when they used a weak password”

There have been a range of responses to concerns over security. The Internet of Things Security Foundation (IoTSF) was launched on 23 September 2015 with a mission to secure the Internet of things by promoting knowledge and best practice. Its founding board is made from technology providers and telecommunications companies. In addition, large IT companies are continuously developing innovative solutions to ensure the security for IoT devices. In 2017, Mozilla launched Project Things, which allows to route IoT devices through a safe Web of Things gateway. As per the estimates from KBV Research, the overall IoT security market would grow at 27.9% rate during 2016–2022 as a result of growing infrastructural concerns and diversified usage of Internet of things.

Governmental regulation is argued by some to be necessary to secure IoT devices and the wider Internet – as market incentives to secure IoT devices is insufficient.

Safety

IoT systems are typically controlled by event-driven smart apps that take as input either sensed data, user inputs, or other external triggers (from the Internet) and command one or more actuators towards providing different forms of automation. Examples of sensors include smoke detectors, motion sensors, and contact sensors. Examples of actuators include smart locks, smart power outlets, and door controls. Popular control platforms on which third-party developers can build smart apps that interact wirelessly with these sensors and actuators include Samsung’s SmartThings, Apple’s HomeKit, and Amazon’s Alexa, among others.

A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states, e.g., “unlock the entrance door when no one is at home” or “turn off the heater when the temperature is below 0 degrees Celsius and people are sleeping at night”. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. Recently, researchers from the University of California Riverside have proposed IotSan, a novel practical system that uses model checking as a building block to reveal “interaction-level” flaws by identifying events that can lead the system to unsafe states. They have evaluated IotSan on the Samsung SmartThings platform. From 76 manually configured systems, IotSan detects 147 vulnerabilities (i.e., violations of safe physical states/properties).

Design

Given widespread recognition of the evolving nature of the design and management of the Internet of things, sustainable and secure deployment of IoT solutions must design for “anarchic scalability.” Application of the concept of anarchic scalability can be extended to physical systems (i.e. controlled real-world objects), by virtue of those systems being designed to account for uncertain management futures. This hard anarchic scalability thus provides a pathway forward to fully realize the potential of Internet-of-things solutions by selectively constraining physical systems to allow for all management regimes without risking physical failure.

Brown University computer scientist Michael Littman has argued that successful execution of the Internet of things requires consideration of the interface’s usability as well as the technology itself. These interfaces need to be not only more user-friendly but also better integrated: “If users need to learn different interfaces for their vacuums, their locks, their sprinklers, their lights, and their coffeemakers, it’s tough to say that their lives have been made any easier.”

Environmental Sustainability Impact

A concern regarding Internet-of-things technologies pertains to the environmental impacts of the manufacture, use, and eventual disposal of all these semiconductor-rich devices. Modern electronics are replete with a wide variety of heavy metals and rare-earth metals, as well as highly toxic synthetic chemicals. This makes them extremely difficult to properly recycle. Electronic components are often incinerated or placed in regular landfills. Furthermore, the human and environmental cost of mining the rare-earth metals that are integral to modern electronic components continues to grow. This leads to societal questions concerning the environmental impacts of IoT devices over its lifetime.

Intentional Obsolescence of Devices

The Electronic Frontier Foundation has raised concerns that companies can use the technologies necessary to support connected devices to intentionally disable or “brick” their customers’ devices via a remote software update or by disabling a service necessary to the operation of the device. In one example, home automation devices sold with the promise of a “Lifetime Subscription” were rendered useless after Nest Labs acquired Revolv and made the decision to shut down the central servers the Revolv devices had used to operate. As Nest is a company owned by Alphabet (Google’s parent company), the EFF argues this sets a “terrible precedent for a company with ambitions to sell self-driving cars, medical devices, and other high-end gadgets that may be essential to a person’s livelihood or physical safety.”

Owners should be free to point their devices to a different server or collaborate on improved software. But such action violates the United States DMCA section 1201, which only has an exemption for “local use”. This forces tinkerers who want to keep using their own equipment into a legal grey area. EFF thinks buyers should refuse electronics and software that prioritize the manufacturer’s wishes above their own.

Examples of post-sale manipulations include Google Nest Revolv, disabled privacy settings on Android, Sony disabling Linux on PlayStation 3, enforced EULA on Wii U.

Confusing Terminology

Kevin Lonergan at Information Age, a business-technology magazine, has referred to the terms surrounding the IoT as a “terminology zoo”. The lack of clear terminology is not “useful from a practical point of view” and a “source of confusion for the end user”. A company operating in the IoT space could be working in anything related to sensor technology, networking, embedded systems, or analytics. According to Lonergan, the term IoT was coined before smart phones, tablets, and devices as we know them today existed, and there is a long list of terms with varying degrees of overlap and technological convergence: Internet of things, Internet of everything (IoE), Internet of Goods (Supply Chain), industrial Internet, pervasive computing, pervasive sensing, ubiquitous computing, cyber-physical systems (CPS), wireless sensor networks (WSN), smart objects, digital twin, cyberobjects or avatars, cooperating objects, machine to machine (M2M), ambient intelligence (AmI), Operational technology (OT), and information technology (IT). Regarding IIoT, an industrial sub-field of IoT, the Industrial Internet Consortium’s Vocabulary Task Group has created a “common and reusable vocabulary of terms” to ensure “consistent terminology” across publications issued by the Industrial Internet Consortium. IoT One has created an IoT Terms Database including a New Term Alert to be notified when a new term is published. As of March 2017, this database aggregates 711 IoT-related terms, while keeping material “transparent and comprehensive.”

IoT Adoption Barriers

Lack of interoperability and unclear value propositions

Despite a shared belief in the potential of the IoT, industry leaders and consumers are facing barriers to adopt IoT technology more widely. Mike Farley argued in Forbes that while IoT solutions appeal to early adopters, they either lack interoperability or a clear use case for end-users. A study by Ericsson regarding the adoption of IoT among Danish companies suggests that many struggle “to pinpoint exactly where the value of IoT lies for them”.

GE Digital CEO William Ruh speaking about GE’s attempts to gain a foothold in the market for IoT services at the first IEEE Computer Society TechIgnite conference.

Privacy and Security Concerns

According to a recent study by Noura Aleisa and Karen Renaud at the University of Glasgow, “the Internet of things’ potential for major privacy invasion is a concern” with much of research “disproportionally focused on the security concerns of IoT.” Among the “proposed solutions in terms of the techniques they deployed and the extent to which they satisfied core privacy principles”, only very few turned out to be fully satisfactory. Louis Basenese, investment director at Wall Street Daily, has criticized the industry’s lack of attention to security issues:

“Despite high-profile and alarming hacks, device manufacturers remain undeterred, focusing on profitability over security. Consumers need to have ultimate control over collected data, including the option to delete it if they choose…Without privacy assurances, wide-scale consumer adoption simply won’t happen.”

In a post-Snowden world of global surveillance disclosures, consumers take a more active interest in protecting their privacy and demand IoT devices to be screened for potential security vulnerabilities and privacy violations before purchasing them. According to the 2016 Accenture Digital Consumer Survey, in which 28000 consumers in 28 countries were polled on their use of consumer technology, security “has moved from being a nagging problem to a top barrier as consumers are now choosing to abandon IoT devices and services over security concerns.” The survey revealed that “out of the consumers aware of hacker attacks and owning or planning to own IoT devices in the next five years, 18 percent decided to terminate the use of the services and related services until they get safety guarantees.” This suggests that consumers increasingly perceive privacy risks and security concerns to outweigh the value propositions of IoT devices and opt to postpone planned purchases or service subscriptions.

Traditional Governance Structures

A study issued by Ericsson regarding the adoption of Internet of things among Danish companies identified a “clash between IoT and companies’ traditional governance structures, as IoT still presents both uncertainties and a lack of historical precedence.” Among the respondents interviewed, 60 percent stated that they “do not believe they have the organizational capabilities, and three of four do not believe they have the processes needed, to capture the IoT opportunity.” This has led to a need to understand organizational culture in order to facilitate organizational design processes and to test new innovation management practices. A lack of digital leadership in the age of digital transformation has also stifled innovation and IoT adoption to a degree that many companies, in the face of uncertainty, “were waiting for the market dynamics to play out”, or further action in regards to IoT “was pending competitor moves, customer pull, or regulatory requirements.” Some of these companies risk being ‘kodaked’ – “Kodak was a market leader until digital disruption eclipsed film photography with digital photos” – failing to “see the disruptive forces affecting their industry” and “to truly embrace the new business models the disruptive change opens up.” Scott Anthony has written in Harvard Business Review that Kodak “created a digital camera, invested in the technology, and even understood that photos would be shared online” but ultimately failed to realize that “online photo sharing was the new business, not just a way to expand the printing business.”

Business Planning and Models

According to 2018 study, 70–75% of IoT deployments were stuck in the pilot or prototype stage, unable to reach scale due in part to a lack of business planning.[235][page needed]

Studies on IoT literature and projects show a disproportionate prominence of technology in the IoT projects, which are often driven by technological interventions rather than business model innovation.

Town of Internet of Things in Hangzhou, China